login
A000968
Sum of odd Fermat coefficients rounded to nearest integer.
(Formerly M1176 N0452)
1
1, 1, 2, 4, 9, 20, 46, 105, 246, 583, 1393, 3355, 8133, 19825, 48554, 119412, 294761, 729980, 1813107, 4515225, 11271198, 28196896, 70679137, 177487714, 446446560, 1124706145, 2837445500, 7167878628, 18129622761, 45907772900, 116372614251
OFFSET
1,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. A. Piza, Fermat coefficients, Math. Mag., 27 (1954), 141-146.
FORMULA
Following Piza's definition for the Fermat coefficients: (n:c)=binomial(2n-c, c-1)/c, a(n)= Round( sum_{c<=n & c odd} (n:c) ). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 13 2005
EXAMPLE
n Sum_{c<=n & c odd} (n:c) a(n)
-------------------------------------
.1........1......................1
.2........1......................1
.3........2......................2
.4........4+1/3..................4
MAPLE
FermatCoeff:=(n, c)->binomial(2*n-c, c-1)/c:seq(round(add(FermatCoeff(n, 2*r+1), r=0..floor(n/2))), n=1..40); # Pab Ter, Oct 13 2005
MATHEMATICA
F[n_, c_]:=Binomial[2n - c, c - 1]/c; Table[Round[Sum[F[n, 2r + 1], {r, 0, Floor[n/2]}]], {n, 40}] (* Indranil Ghosh, Apr 01 2017 *)
PROG
(PARI) F(n, c) = binomial(2*n - c, c - 1)/c;
for(n=1, 40, print1(round(sum(r=0, floor(n/2), F(n, 2*r + 1))), ", ")) \\ Indranil Ghosh, Apr 01 2017
(Python)
from sympy import binomial
def F(n, c): return binomial(2*n - c, c - 1)/c
print([int(round(sum([F(n, 2*r + 1) for r in range(n//2 + 1)]))) for n in range(1, 41)]) # Indranil Ghosh, Apr 01 2017
CROSSREFS
Sequence in context: A057417 A191653 A191827 * A005908 A206119 A085748
KEYWORD
nonn
EXTENSIONS
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 13 2005
STATUS
approved