login
A000864
Deceptive nonprimes: composite numbers k that divide the repunit R_{k-1}.
3
91, 259, 451, 481, 703, 1729, 2821, 2981, 3367, 4141, 4187, 5461, 6533, 6541, 6601, 7471, 7777, 8149, 8401, 8911, 10001, 11111, 12403, 13981, 14701, 14911, 15211, 15841, 19201, 21931, 22321, 24013, 24661, 27613, 29341, 34133
OFFSET
1,1
COMMENTS
Francis and Ray call these numbers "deceptive primes".
Pseudoprimes to base 10, A005939, not divisible by 3. If k is in the sequence, then (10^k-1)/9 is in the sequence, by Steuerwald's theorem; see A005935. - Thomas Ordowski, Apr 10 2016
41041 is the first term that has four prime divisors. - Altug Alkan, Apr 10 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
R. Francis and T. Ray, The deceptive primes to 2.10^7, Missouri J. Math. Sci. 12 (2000), no. 3, 145-158.
MAPLE
select(t -> not isprime(t) and (10&^(t-1) - 1) mod (9*t) = 0, [seq(t, t=3..10^5, 2)]); # Robert Israel, Apr 10 2016
PROG
(PARI) p=5; forprime(q=7, 1e5, forstep(n=p+2, q-2, 2, if(n%5 && Mod(10, 9*n)^(n-1)==1, print1(n", "))); p=q) \\ Charles R Greathouse IV, Jul 31 2011
CROSSREFS
Sequence in context: A225909 A051973 A290812 * A224460 A350206 A020441
KEYWORD
nonn
AUTHOR
Tim Ray (c268scm(AT)semovm.semo.edu)
STATUS
approved