login
A000486
One half of the number of permutations of [n] such that the differences have 4 runs with the same signs.
(Formerly M5011 N2158)
4
16, 150, 926, 4788, 22548, 100530, 433162, 1825296, 7577120, 31130190, 126969558, 515183724, 2082553132, 8395437930, 33776903714, 135691891272, 544517772984, 2183315948550, 8748985781230, 35043081823140, 140313684667076
OFFSET
5,1
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #13
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
Limit_{n->infinity} 8*a(n)/4^n = 1. - Philippe Deléham, Feb 22 2004
G.f.: 2*x^5*(24*x^2-29*x+8) / ((x-1)^2*(2*x-1)^2*(3*x-1)*(4*x-1)). - Colin Barker, Dec 21 2012
EXAMPLE
a(5)=16 because the permutations of [5] with four sign runs are 13254, 14253, 14352, 15342, 15243, 21435, 21534, 23154, 24153, 25143, 31425, 31524, 32415, 32514, 41325, 42315 and their reversals.
MATHEMATICA
CoefficientList[Series[2 (24 x^2 - 29 x + 8)/((x - 1)^2 (2 x - 1)^2 (3 x - 1) (4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2013 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0; 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 1; -48, 172, -244, 175, -67, 13]^(n-5)*[16; 150; 926; 4788; 22548; 100530])[1, 1] \\ Charles R Greathouse IV, Jun 23 2020
CROSSREFS
a(n) = T(n, 4), where T(n, k) is the array defined in A008970.
Equals 1/2 * A060158(n).
Sequence in context: A269137 A155657 A135458 * A223069 A006420 A221422
KEYWORD
nonn,easy
EXTENSIONS
Edited by Emeric Deutsch, Feb 18 2004
STATUS
approved