OFFSET
0,3
COMMENTS
Let [d1, d2, d3, ...] be the decimal expansion of the n-th term, then dk is the number of times that the greedy algorithm subtracts the cube k^3 with input n. - Joerg Arndt, Nov 21 2014
For n > 1: A048766(n) = number of digits of a(n); A190311(n) = number of nonzero digits of a(n); A055401(n) = sum of digits of a(n). - Reinhard Zumkeller, May 08 2011
First differs from numbers written in base 8 (A007094) at a(27) = 100, whereas A007094(27) = 33. - Alonso del Arte, Nov 27 2014
The rightmost (least significant) digit never exceeds 7, the second digit from the right never exceeds 3, the third digit never exceeds 2, and the rest are just 0's and 1's. - Ivan Neretin, Sep 03 2015
REFERENCES
Florentin Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
EXAMPLE
a(26) = 32 because 26 = 3 * 2^3 + 2 * 1^3.
a(27) = 100 because 27 = 3^3 + 0 * 2^3 + 0 * 1^3.
a(28) = 101 because 28 = 3^3 + 0 * 2^3 + 1 * 1^3.
PROG
(Haskell)
import Data.Char (intToDigit)
a000433 0 = 0
a000433 n = read $ map intToDigit $
t n $ reverse $ takeWhile (<= n) $ tail a000578_list where
t _ [] = []
t m (x:xs)
| x > m = 0 : t m xs
| otherwise = (fromInteger m') : t r xs where (m', r) = divMod m x
-- Reinhard Zumkeller, May 08 2011
CROSSREFS
KEYWORD
AUTHOR
R. Muller
STATUS
approved