%I M3163 N1281 #88 Nov 11 2019 10:23:58
%S 1,3,57,2763,250737,36581523,7828053417,2309644635483,898621108880097,
%T 445777636063460643,274613643571568682777,205676334188681975553003,
%U 184053312545818735778213457,193944394596325636374396208563
%N Expansion of cos(x)/cos(2x).
%C a(n) is (2n)! times the coefficient of x^(2n) in the Taylor series for cos(x)/cos(2x).
%D J. W. L. Glaisher, "On the coefficients in the expansions of cos x / cos 2x and sin x / cos 2x", Quart. J. Pure and Applied Math., 45 (1914), 187-222.
%D I. J. Schwatt, Intro. to Operations with Series, Chelsea, p. 278.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. C. Greubel, <a href="/A000281/b000281.txt">Table of n, a(n) for n = 0..215</a> (terms 0..50 from T. D. Noe)
%H P. Bala, <a href="/A000281/a000281.pdf">A triangle for calculating A000281</a>
%H P. Bala, <a href="/A002439/a002439.pdf">Some S-fractions related to the expansions of sin(ax)/cos(bx) and cos(ax)/cos(bx)</a>
%H Kwang-Wu Chen, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Chen/chen50.html">An Interesting Lemma for Regular C-fractions</a>, J. Integer Seqs., Vol. 6, 2003.
%H D. Dumont, <a href="http://dx.doi.org/10.1006/aama.1995.1014">Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers</a>, Adv. Appl. Math., 16 (1995), 275-296.
%H Matthieu Josuat-Vergès and Jang Soo Kim, <a href="http://arxiv.org/abs/1101.5608">Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity</a>, arXiv:1101.5608 [math.CO] (2011).
%H D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1967-0223295-5">Generalized Euler and class numbers</a>. Math. Comp. 21 (1967) 689-694, sequence c(2,n).
%H D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1968-0227093-9">Corrigenda to: "Generalized Euler and class numbers"</a>, Math. Comp. 22 (1968), 699.
%H D. Shanks, <a href="/A000003/a000003.pdf">Generalized Euler and class numbers</a>, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
%F a(n) = Sum_{k=0..n} (-1)^k*binomial(2n, 2k)*A000364(n-k)*4^(n-k). - _Philippe Deléham_, Jan 26 2004
%F E.g.f.: Sum_{k>=0} a(k)x^(2k)/(2k)! = cos(x)/cos(2x).
%F a(n-1) is approximately 2^(4*n-3)*(2*n-1)!*sqrt(2)/((Pi^(2*n-1))*(2*n-1)). The approximation is quite good a(250) is of the order of 10^1181 and this formula is accurate to 238 digits. - _Simon Plouffe_, Jan 31 2007
%F G.f.: 1 / (1 - 1*3*x / (1 - 4*4*x / (1 - 5*7*x / (1 - 8*8*x / (1 - 9*11*x / ... ))))). - _Michael Somos_, May 12 2012
%F G.f.: 1/E(0) where E(k) = 1 - 3*x - 16*x*k*(2*k+1) - 16*x^2*(k+1)^2*(4*k+1)*(4*k+3)/E(k+1) (continued fraction, 1-step). - _Sergei N. Gladkovskii_, Sep 17 2012
%F G.f.: T(0)/(1-3*x), where T(k) = 1 - 16*x^2*(4*k+1)*(4*k+3)*(k+1)^2/( 16*x^2*(4*k+1)*(4*k+3)*(k+1)^2 - (32*x*k^2+16*x*k+3*x-1 )*(32*x*k^2+80*x*k+51*x -1)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 11 2013
%F From _Peter Bala_, Mar 09 2015: (Start)
%F a(n) = (-1)^n*4^(2*n)*E(2*n,1/4), where E(n,x) denotes the n-th Euler polynomial.
%F O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 + x*(4*k + 1)^2) = 1 + 3*x + 57*x^2 + 2763*x^3 + ....
%F We appear to have the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + .... See A093954.
%F Bisection of A001586. See also A188458 and A212435. Second row of A235605 (read as a square array).
%F The expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) appears to have integer coefficients. See A255883. (End)
%F From _Peter Luschny_, Mar 11 2015: (Start)
%F a(n) = ((-64)^n/((n+1/2)))*(B(2*n+1,7/8)-B(2*n+1,3/8)), B(n,x) Bernoulli polynomials.
%F a(n) = 2*(-16)^n*LerchPhi(-1, -2*n, 1/4).
%F a(n) = (-1)^n*Sum_{0..2*n} 2^k*C(2*n,k)*E(k), E(n) the Euler secant numbers A122045.
%F a(n) = (-4)^n*SKP(2*n,1/2) where SKP are the Swiss-Knife polynomials A153641.
%F a(n) = (-1)^n*2^(6*n+1)*(Zeta(-2*n,1/8) - Zeta(-2*n,5/8)), where Zeta(a,z) is the generalized Riemann zeta function. (End)
%F From _Peter Bala_, May 13 2017: (Start)
%F G.f.: 1/(1 + x - 4*x/(1 - 12*x/(1 + x - 40*x/(1 - 56*x/(1 + x - ... - 4*n(4*n - 3)*x/(1 - 4*n(4*n - 1)*x/(1 + x - ...
%F G.f.: 1/(1 + 9*x - 12*x/(1 - 4*x/(1 + 9*x - 56*x/(1 - 40*x/(1 + 9*x - ... - 4*n(4*n - 1)*x/(1 - 4*n(4*n - 3)*x/(1 + 9*x - .... (End)
%F From _Peter Bala_, Nov 08 2019: (Start)
%F a(n) = sqrt(2)*4^n*Integral_{x = 0..inf} x^(2*n)*cosh(Pi*x/2)/cosh(Pi*x) dx. Cf. A002437.
%F The L-series 1 + 1/3^(2*n+1) - 1/5^(2*n+1) - 1/7^(2*n+1) + + - - ... = sqrt(2)*(Pi/4)^(2*n+1)*a(n)/(2*n)! (see Shanks), which gives a(n) ~ (1/sqrt(2))*(2*n)!*(4/Pi)^(2*n+1). (End)
%e cos x / cos 2*x = 1 + 3*x^2/2 + 19*x^4/8 + 307*x^6/80 + ...
%p a := n -> (-1)^n*2^(6*n+1)*(Zeta(0,-2*n,1/8)-Zeta(0,-2*n,5/8)):
%p seq(a(n), n=0..13); # _Peter Luschny_, Mar 11 2015
%t With[{nn=30},Take[CoefficientList[Series[Cos[x]/Cos[2x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, Oct 06 2011 *)
%o (PARI) {a(n) = if( n<0, 0, n*=2; n! * polcoeff( cos(x + x * O(x^n)) / cos(2*x + x * O(x^n)), n))}; /* _Michael Somos_, Feb 09 2006 */
%Y Cf. A000364 A086646, A002437.
%Y Cf. A064069. Bisection of A000825, A001586.
%Y Cf. A098432. Cf. A093954, A188458, A212435, A235605, A255883.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_