login
A000269
Number of trees with n nodes, 3 of which are labeled.
(Formerly M3014 N1220)
2
3, 16, 67, 251, 888, 3023, 10038, 32722, 105228, 334836, 1056611, 3311784, 10322791, 32026810, 98974177, 304835956, 936147219, 2867586542, 8764280567, 26733395986, 81399821915, 247459136331, 751211286356, 2277496842016
OFFSET
3,1
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: A(x) = B(x)^3*(3-2*B(x))/(1-B(x))^3, where B(x) is g.f. for rooted trees with n nodes, cf. A000081. - Vladeta Jovovic, Oct 19 2001
a(n) = A000524(n) - 2*A000243(n).
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1 - j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[ b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[ B[n-1]^3 * (2*B[n-1]-3) / (B[n-1]-1)^3, {x, 0, n}]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Jan 27 2015 *)
CROSSREFS
Column k=3 of A034799.
Sequence in context: A179600 A278089 A248016 * A370248 A370274 A015524
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms, new description and formula from Christian G. Bower, Nov 15 1999
STATUS
approved