OFFSET
1,4
COMMENTS
Shadow transform of the cubes A000578. - Michel Marcus, Jun 06 2013
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Henry Bottomley, Some Smarandache-type multiplicative sequences.
Steven R. Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150. (ps, pdf); see Definition 7 for the shadow transform.
Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms).
OEIS Wiki, Shadow transform.
N. J. A. Sloane, Transforms.
FORMULA
Multiplicative with a(p^e) = p^[2e/3]. - David W. Wilson, Aug 01 2001
a(n) = n/A019555(n). - Petros Hadjicostas, Sep 15 2019
Dirichlet g.f.: zeta(3*s-2) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1)). - Amiram Eldar, Sep 09 2023
From Vaclav Kotesovec, Sep 09 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * zeta(3*s-2) * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s-1) - 1/p^(4*s-2) + 1/p^(4*s-1) + 1/p^(5*s-2)).
Let f(s) = Product_{primes p} (1 - 1/p^(2*s) - 1/p^(3*s-1) - 1/p^(4*s-2) + 1/p^(4*s-1) + 1/p^(5*s-2)).
Sum_{k=1..n} a(k) ~ (f(1)*n/6) * (log(n)^2/2 + (6*gamma - 1 + f'(1)/f(1))*log(n) + 1 - 6*gamma + 11*gamma^2 - 14*sg1 + (6*gamma - 1)*f'(1)/f(1) + f''(1)/(2*f(1))), where
f(1) = Product_{primes p} (1 - 3/p^2 + 2/p^3) = A065473 = 0.2867474284344787341078927127898384464343318440970569956414778593366522431...,
f'(1) = f(1) * Sum_{primes p} 9*log(p) / (p^2 + p - 2) = f(1) * 4.1970213428422788650375569145777616746065054412058004220013841318980729375...,
f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} (-29*p^2 - 17*p + 1) * log(p)^2 / (p^2 + p - 2)^2 = f'(1)^2/f(1) + f(1) * (-21.3646716550082193262514333696570765444176783899223644201265894338042468...),
EXAMPLE
a(4) = 2 because 0^3 == 0, 1^3 == 1, 2^3 == 0, and 3^3 == 3 (mod 4); also, a(9) = 3 because 0^3 = 0, 3^3 == 0, and 6^3 = 0 (mod 9), while x^3 =/= 0 (mod 9) for x = 1, 2, 4, 5, 7, 8. - Petros Hadjicostas, Sep 16 2019
MATHEMATICA
Array[ Function[ n, Count[ Array[ PowerMod[ #, 3, n ]&, n, 0 ], 0 ] ], 100 ]
f[p_, e_] := p^Floor[2*e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
PROG
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], f[i, 1]^(2*f[i, 2]\3)) \\ Charles R Greathouse IV, Jun 06 2013
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + X + p*X^2)/(1 - p^2*X^3))[n], ", ")) \\ Vaclav Kotesovec, Aug 30 2021
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
STATUS
approved