login
A000147
Number of trees of diameter 5.
(Formerly M1741 N0690)
4
0, 0, 0, 0, 0, 1, 2, 7, 14, 32, 58, 110, 187, 322, 519, 839, 1302, 2015, 3032, 4542, 6668, 9738, 14006, 20036, 28324, 39830, 55473, 76875, 105692, 144629, 196585, 266038, 357952, 479664, 639519, 849425, 1123191, 1479972, 1942284, 2540674, 3311415
OFFSET
1,7
COMMENTS
A tree of diameter 5 is formed from two rooted trees of height 2, with their roots joined. - Franklin T. Adams-Watters, Jan 13 2006
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
If n odd, a(n) = Sum_{k=1..(n-1)/2} b(k)*b(n-k); if n even, a(n) = (Sum_{k=1..n/2-1} b(k)*b(n-k)) + C(b(n/2)+1, 2), where b(n) = P(n-1)-1 = A000065(n-1). - Franklin T. Adams-Watters, Jan 13 2006
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
g:= n-> b((n-1)$2, 2) -b((n-1)$2, 1):
a:= n-> (add(g(i)*g(n-i), i=0..n)+`if`(n::even, g(n/2), 0))/2:
seq(a(n), n=1..45); # Alois P. Heinz, Feb 09 2016
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1 || k<1, 0, Sum[Binomial[ b[i-1, i-1, k-1]+j-1, j]*b[n-i*j, i-1, k], {j, 0, n/i}]]]; g[n_] := b[n-1, n-1, 2] - b[n-1, n-1, 1]; a[n_] := (Sum[g[i]*g[n-i], {i, 0, n}] + If[EvenQ[n], g[n/2], 0])/2; Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A034853, A000251 (diameter 6).
Sequence in context: A286829 A286861 A290682 * A334069 A128902 A227213
KEYWORD
nonn
EXTENSIONS
More terms from Franklin T. Adams-Watters, Jan 13 2006
STATUS
approved