login
A000003
Number of classes of primitive positive definite binary quadratic forms of discriminant D = -4n; or equivalently the class number of the quadratic order of discriminant D = -4n.
(Formerly M0196 N0073)
49
1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 3, 4, 4, 2, 3, 4, 2, 6, 3, 2, 6, 4, 3, 4, 4, 4, 6, 4, 2, 6, 4, 4, 8, 4, 3, 6, 4, 4, 5, 4, 4, 6, 6, 4, 6, 6, 4, 8, 4, 2, 9, 4, 6, 8, 4, 4, 8, 8, 3, 8, 8, 4, 7, 4, 4, 10, 6, 6, 8, 4, 5, 8, 6, 4, 9, 8, 4, 10, 6, 4, 12, 8, 6, 6, 4, 8, 8, 8, 4, 8, 6, 4
OFFSET
1,5
COMMENTS
From Joerg Arndt, Sep 02 2008: (Start)
It seems that 2*a(n) gives the degree of the minimal polynomial of (k_n)^2 where k_n is the n-th singular value, i.e., K(sqrt(1-k_n^2))/K(k_n)==sqrt(n) (and K is the elliptic integral of the first kind: K(x) := hypergeom([1/2,1/2],[1], x^2)).
Also, when setting K3(x)=hypergeom([1/3,2/3],[1], x^3) and solving for x such that K3((1-x^3)^(1/3))/K3(x)==sqrt(n), then the degree of the minimal polynomial of x^3 is every third term of this sequence, or so it seems. (End)
a(n) appears to be the degree of Klein's j-invariant j(sqrt(-n)) as an algebraic integer. - Li Han, Mar 02 2020
REFERENCES
D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pages 20 and 231-234.[Dics means D = - Discriminant (see p. 223), and only squarefree cases appear on pp. 231-234, but not on p. 20. - Wolfdieter Lang, May 15 2021]
H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 514.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Harriet Fell, Morris Newman, Edward Ordman, Tables of genera of groups of linear fractional transformations, J. Res. Nat. Bur. Standards Sect. B 67B 1963 61-68.
Daniel Shanks, On the Conjecture of Hardy & Littlewood concerning the Number of Primes of the Form n^2 + a, Math. Comp. 14 (1960), 320-332. (Table 1 gives first 100 terms.)
D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
MATHEMATICA
a[1] = 1; a[n_] := (k0 = k /. FindRoot[EllipticK[1-k^2]/EllipticK[k^2] == Sqrt[n], {k, 1/2, 10^-10, 1}, WorkingPrecision -> 600, MaxIterations -> 100]; Exponent[ MinimalPolynomial[RootApproximant[k0^2, 24], x], x]/2); Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 100}] (* Jean-François Alcover, Jul 21 2015, after Joerg Arndt *)
PROG
(Magma) O1 := MaximalOrder(QuadraticField(D)); _, f := IsSquare(D div Discriminant(O1)); ClassNumber(sub<O1|f>);
(PARI) {a(n) = qfbclassno(-4*n)}; /* Michael Somos, Jul 16 1999 */
CROSSREFS
See A014599 for discriminant -(4n-1).
A006643 is a subsequence.
Sequence in context: A375325 A302490 A316841 * A234398 A168208 A333003
KEYWORD
nonn,nice,easy
STATUS
approved