Collection of series for p
(Click here for
a Postscript version of this page.)
1��Introduction
There are a great many numbers of series involving the constant p, we provide a selection. The great Swiss mathematician
Leonhard Euler (1707-1783) discovered many of those.
2��Around Leibniz-Gregory-Madhava series
|
|
1- |
1
3
|
+ |
1
5
|
- |
1
7
|
+...������ (Leibniz-Gregory-Madhava) | |
|
|
|
� � k = 0�
|
|
�(-1)k
k + 1
|
|
� � |
1+ |
�1
3
|
+...+ |
�1
2k + 1
|
� � |
������
(Knopp) | |
|
|
|
3
4
|
+ |
1
2.3.4
|
- |
1
4.5.6
|
+ |
1
6.7.8
|
-...������
(Nilakantha)
| |
|
|
1+ |
1
3
|
+ |
1.2
3.5
|
+ |
1.2.3
3.5.7
|
+...������ (Euler) | |
|
|
|
1.2
1.3
|
+ |
1.2.3
1.3.5
|
+ |
1.2.3.4
1.3.5.7
|
+... | |
|
|
|
� � k = 1�
|
|
3k - 1
4k
|
z(k + 1)������
(Flajolet-Vardi)
| |
|
|
|
� � k = 1�
|
arctan |
� � |
1
k2 + k + 1
|
� � |
������
(Knopp) | |
|
|
|
� � k = 1�
|
|
1
2k + 1
|
tan |
� � |
p
2k + 1
|
� � |
������
(Euler) | |
|
|
1+ |
1
3
|
- |
1
5
|
- |
1
7
|
+ |
1
9
|
+ |
1
11
|
-...
| |
|
|
1- |
1
5
|
+ |
1
7
|
- |
1
11
|
+ |
1
13
|
- |
1
17
|
+... | |
|
|
1- |
1
2
|
+ |
1
4
|
- |
1
5
|
+ |
1
7
|
- |
1
8
|
+... | |
|
|
|
� � k = 0�
|
|
(-1)k
3k(2k + 1)
|
������
(Sharp) | | |
3��Euler's series
It was a great problem to find the limit of the series
1+ |
1
4
|
+ |
1
9
|
+...+ |
1
k2
|
+..., | |
some of
the greatest mathematicians of the seventeenth century failed to find this
limit. After trying unsuccessfully to solve it, Jakob Bernoulli challenged
mathematicians with this problem. It was Euler, in 1735, who found the value of
the series and most of the following result are also due to him (see [4]).
3.1��All integers
|
|
|
� � k = 1�
|
|
1
k2
|
=1+ |
1
22
|
+ |
1
32
|
+... | |
|
|
|
� � k = 1�
|
|
1
k4
|
=1+ |
1
24
|
+ |
1
34
|
+... | |
|
|
|
� � k = 1�
|
|
1
k6
|
=1+ |
1
26
|
+ |
1
36
|
+... | |
|
|
| |
3.2��Odd integers
|
|
|
� � k = 0�
|
|
�1
(2k + 1)2
|
=1+ |
1
32
|
+ |
1
52
|
+... | |
|
|
|
� � k = 0�
|
|
�1
(2k + 1)4
|
=1+ |
1
34
|
+ |
1
54
|
+... | |
|
|
|
� � k = 0�
|
|
�1
(2k + 1)6
|
=1+ |
1
36
|
+ |
1
56
|
+... | |
|
�(4p - 1)| B2p| p2p
2(2p)!
|
| |
|
| |
3.3��All integers alternating
|
|
|
� � k = 1�
|
|
(-1)k + 1
k2
|
=1- |
1
22
|
+ |
1
32
|
-...
| |
|
|
|
� � k = 1�
|
|
(-1)k + 1
k4
|
=1- |
1
24
|
+ |
1
34
|
-...
| |
|
|
|
� � k = 1�
|
|
(-1)k + 1
k6
|
=1- |
1
26
|
+ |
1
36
|
-...
| |
|
�(4p - 2)| B2p| p2p
2(2p)!
|
| |
|
| |
3.4��Odd integers alternating
|
|
|
� � k = 0�
|
|
(-1)k
(2k + 1)3
|
=1- |
1
33
|
+ |
1
53
|
-...
| |
|
|
|
� � k = 0�
|
|
(-1)k
(2k + 1)5
|
=1- |
1
35
|
+ |
1
55
|
-...
| |
|
|
|
� � k = 0�
|
|
(-1)k
(2k + 1)7
|
=1- |
1
37
|
+ |
1
57
|
-...
| |
|
| E2p| p2p + 1
4p + 1(2p)!
|
| |
|
|
� � k = 0�
|
|
(-1)k
(2k + 1)2p + 1
|
| | |
Bn and En are respectively Bernoulli's numbers and
Euler's numbers.
|
|
1, B1= - |
1
2
|
, B2= |
1
6
|
, B4= - |
1
30
|
, B6= |
1
42
|
, B8= - |
1
30
|
, B10= |
5
66
|
,... | |
|
|
1, E2= -1, E4=5, E6= -61, E8=1385, E10= -50251,... | | |
3.5��With prime numbers
In the following series, only the denominators with an odd number of prime
factors are taken in account. For example 10=2�5 is omitted because it has two
prime factors.
|
|
|
1
22
|
+ |
1
32
|
+ |
1
52
|
+ |
1
72
|
+ |
1
82
|
+ |
1
112
|
+... | |
|
|
|
1
24
|
+ |
1
34
|
+ |
1
54
|
+ |
1
74
|
+ |
1
84
|
+ |
1
114
|
+... | |
|
|
|
1
26
|
+ |
1
36
|
+ |
1
56
|
+ |
1
76
|
+ |
1
86
|
+ |
1
116
|
+... | |
|
|
|
1
22p
|
+ |
1
32p
|
+ |
1
52p
|
+ |
1
72p
|
+ |
1
82p
|
+ |
1
112p
|
+... | | |
If this time the prime factors are also supposed to be different:
|
|
|
1
22
|
+ |
1
32
|
+ |
1
52
|
+ |
1
72
|
+ |
1
112
|
+ |
1
132
|
+... | |
|
|
|
1
24
|
+ |
1
34
|
+ |
1
54
|
+ |
1
74
|
+ |
1
114
|
+ |
1
134
|
+... | |
|
|
|
1
26
|
+ |
�1
36
|
+ |
1
56
|
+ |
1
76
|
+ |
1
116
|
+ |
1
136
|
+... | |
|
�z2(2p) - z(4p)
2z(2p)z(4p)
|
| |
|
|
1
22p
|
+ |
1
32p
|
+ |
1
52p
|
+ |
1
72p
|
+ |
1
112p
|
+ |
1
132p
|
+... | | |
4��Machin's formulae
By mean of the function
L(p) = arctan |
� � |
1
p
|
� � |
= |
� k � 0�
|
|
(-1)k
(2k + 1)p2k + 1
|
| |
numerous more
or less efficient formulae to express p are available (
[1], [5], [7], [9]).
Observe that the Leibniz-Gregory-Madhava series may be written as
p/4 = L(1) and Sharp's series is just p/6 = L(�3).
4.1��Two terms formulae
|
|
2L(�2) + L(2�2)������
(Wetherfield)
| |
|
|
L(2) + L(3)������ (Hutton) | |
|
|
2L(3) + L(7)������
(Hutton) | |
|
|
4L(5) - L(239)������
(Machin) | |
|
|
|
|
|
5L(7) + 2L(79/3)������
(Euler) | |
|
|
| |
4.2��Three terms and more formulae
|
|
L(2) + L(5) + L(8)������
(Strassnitzky)
| |
|
|
4L(5) - L(70) + L(99)������
(Euler) | |
|
|
5L(7) + 4L(53) + 2L(4443)
| |
|
|
6L(8) + 2L(57) + L(239)������
(St�rmer)
| |
|
|
8L(10) - L(239) - 4L(515)������
(Klingenstierna)
| |
|
|
12L(18) + 8L(57) - 5L(239)������
(Gauss) | |
|
|
22L(38) + 17L(601/7) + 10L(8149/7)������
(Sebah) | |
|
|
44L(57) + 7L(239) - 12L(682) + 24L(12943)������
(St�rmer)
| |
|
|
88L(172) + 51L(239) + 32L(682) + 44L(5357) + 68L(12943)������(St�rmer) | | |
For
example, more than 100 three terms formulae are known and are easy to generate
by mean of dedicated algorithms.
5��BBP series
In 1995, Bailey, Borwein and Plouffe (BBP) found a new kind of formula
which allows to compute directly the d-th digit of p in
basis 2 (see [2])
p = |
� � k = 0�
|
|
� � |
4
8k + 1
|
- |
2
8k + 4
|
- |
1
8k + 5
|
- |
1
8k + 6
|
� � |
|
1
16k
|
. | |
Other such formulae are available:
|
|
|
� � k = 0�
|
|
� � |
2
4k + 1
|
+ |
2
4k + 2
|
+ |
1
4k + 3
|
� � |
|
�(-1)k
4k
|
, | |
|
|
|
� � k = 0�
|
|
� � |
�2
8k+1
|
+ |
�1
4k+1
|
+ |
�1
8k+3
|
- |
�1
16k+10
|
- |
�1
16k+12
|
- |
�1
32k+28
|
� � |
|
1
16k
|
, | |
|
|
|
�1
64
|
|
� � k = 0�
|
|
� � |
- |
�32
4k+1
|
- |
�1
4k+3
|
+ |
�256
10k+1
|
- |
�64
10k+3
|
- |
�4
10k+5
|
- |
�4
10k+7
|
+ |
�1
10k+9
|
� � |
|
�(-1)k
1024k
|
, | |
|
|
|
� � k = 0�
|
|
� � |
�4
6k+1
|
+ |
�1
6k+3
|
+ |
�1
6k+5
|
� � |
|
�(-1)k
8k
|
, | |
|
|
|
� � k = 0�
|
|
� � |
�16
(6k+1)2
|
- |
�24
(6k+2)2
|
- |
�8
(6k+3)2
|
- |
�6
(6k+4)2
|
+ |
�1
(6k+5)2
|
� � |
|
�1
64k
|
. | | |
The series with 1024k is efficient and due to F. Bellard (1997).
6��Ramanujan's series
Most of those series and many others were found by the Indian prodigy
Srinivasa Ramanujan (1887-1920) ([3], [8]).
|
|
1-5 |
� � |
1
2
|
� � |
3
�
|
+9 |
� � |
1.3
2.4
|
� � |
3
�
|
-13 |
� � |
1.3.5
2.4.6
|
� � |
3
�
|
+... | |
|
|
1+ |
� � |
1
2
|
� � |
2
�
|
+ |
� � |
1
2.4
|
� � |
2
�
|
+ |
� � |
1.3
2.4.6
|
� � |
2
�
|
+ |
� � |
1.3.5
2.4.6.8
|
� � |
2
�
|
+...������ (Forsyth) | |
|
|
|
� � k = 0�
|
(2k)!3
(k!)6
|
�(42k + 5)
212k + 4
|
| |
|
|
|
1
72
|
|
� � k = 0�
|
(-1)k |
�(4k)!
(k!)444k
|
|
�(23 + 260k)
182k
|
| |
|
|
|
1
3528
|
|
� � k = 0�
|
(-1)k |
�(4k)!
(k!)444k
|
|
�(1123 + 21460k)
8822k
|
| |
|
|
|
2�2
9801
|
|
� � k = 0�
|
|
�(4k)!
(k!)444k
|
|
�(1103 + 26390k)
994k
|
| |
|
|
12 |
� � k = 0�
|
(-1)k |
�(6k)!
(3k)!(k!)3
|
|
�(13591409 + 545140134k)
6403203k + 3/2
|
������
(Chudnovsky)
| |
|
|
12 |
� � k = 0�
|
(-1)k |
�(6k)!
(3k)!(k!)3
|
|
�(A + Bk)
C3k + 3/2
|
������
(Borwein) | | |
In
the last formula
|
|
1657145277365+212175710912 |
�
� |
61
� |
, | |
|
|
107578229802750+13773980892672 |
�
� |
61
� |
, | |
|
|
5280(236674+30303 |
�
� |
61
� |
), | | |
and
each additional term in the series adds about 31 digits ...
7��Other series
|
|
|
� � k = 1�
|
|
�(-1)k + 1
36k2 - 1
|
| |
|
|
|
� � k = 1�
|
|
�(-1)k + 1
k(k + 1)(2k + 1)
|
| |
|
|
|
� � k = 1�
|
|
�(-1)k + 1
k(k + 1)(2k + 1)3
|
| |
|
|
|
� � k
odd�
|
|
�(-1)(k - 1)/2
k(k4 + 4)
|
������
(Glaisher)
| |
|
|
1 - 16 |
� � k = 0�
|
|
�1
(4k + 1)2(4k + 3)2(4k + 5)2
|
������
(Lucas) | |
|
|
|
|
|
|
� � k = 1�
|
|
1
(4k2 - 1)2
|
������(Euler) | |
|
|
|
� � k = 1�
|
|
1
(4k2 - 1)3
|
������
(Euler) | |
|
|
|
� � k = 1�
|
|
1
(4k2 - 1)4
|
������
(Euler) | |
|
|
|
� � k = 0�
|
|
�k!2
(2k + 1)!
|
=1+ |
�1
6
|
+ |
�1
30
|
+ |
�1
140
|
+ |
�1
630
|
+... | |
|
|
|
� � k = 0�
|
|
k!2
(2k)!
|
=1+ |
�1
2
|
+ |
�1
6
|
+ |
�1
20
|
+ |
�1
70
|
+ |
�1
252
|
+... | |
|
|
|
|
|
|
� � k = 1�
|
|
k!2
(2k)!k2
|
������(Euler) | |
|
|
|
� � k = 1�
|
|
�k!2
(2k)!k4
|
������
(Comtet) | |
|
|
|
� � k = 0�
|
|
(2k)!
(2k + 1)16kk!2
|
| |
|
|
|
|
|
|
� � k = 0�
|
|
�(25k - 3)k!(2k)!
2k - 1(3k)!
|
������
(Gosper
1974) | | |
References
- [1]
- J. Arndt and C. Haenel, p-�Unleashed, Springer, (2001)
- [2]
- D.H. Bailey, P.B. Borwein and S. Plouffe, On the Rapid Computation of
Various Polylogarithmic Constants, Mathematics of Computation, (1997),
vol. 66, pp. 903-913
- [3]
- J.M. Borwein and P.B. Borwein, Ramanujan and Pi, Scientific
American, (1988), pp. 112-117
- [4]
- L. Euler, Introduction � l'analyse infinit�simale (french
traduction by Labey), Barrois, ain�, Librairie, (original 1748, traduction
1796), vol. 1
- [5]
- C.L. Hwang, More Machin-Type Identities, Math. Gaz., (1997), pp.
120-121
- [6]
- K. Knopp, Theory and application of infinite series, Blackie
& Son, London, (1951)
- [7]
- D.H. Lehmer,�On Arctangent Relations for p, The American Mathematical Monthly, (1938), pp. 657-664
- [8]
- S. Ramanujan, Modular equations and approximations to p, Quart. J. Pure Appl. Math., (1914), vol. 45, pp. 350-372
- [9]
- C. St�rmer, Sur l'application de la th�orie des nombres entiers
complexes � la solution en nombres rationnels
x1, x2, ..., xn, c1, c2, ..., cn, k
de l'�quation c1arctg x1+c2 arctg
x2+...+cn arctg xn=kp/4, Archiv for Mathematik og Naturvidenskab, (1896), vol.
19