TOPICS
Search

Gram Block


Let a Gram point g_n be called "good" if (-1)^nZ(g_n)>0, and "bad" otherwise (Rosser et al. 1969; Edwards 2001, p. 180). Then the interval between two consecutive good Gram points is known as a Gram block.


See also

Gram's Law, Gram Point, Rosser's Rule

Explore with Wolfram|Alpha

References

Edwards, H. M. Riemann's Zeta Function. New York: Dover, 2001.Rosser, J. B.; Yohe, J. B.; and Schoenfeld, L. "Rigorous Computation and the Zeros of the Riemann Zeta-Function." In Cong. Proc. Int. Fed. Information Process., 1968. Washington, DC: Spartan, pp. 70-76, 1969.

Referenced on Wolfram|Alpha

Gram Block

Cite this as:

Weisstein, Eric W. "Gram Block." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GramBlock.html

Subject classifications