Skip to main content

Interpretability in Machine Learning – Principles and Practice

  • Conference paper
Fuzzy Logic and Applications (WILF 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8256))

Included in the following conference series:

Abstract

Theoretical advances in machine learning have been reflected in many research implementations including in safety-critical domains such as medicine. However this has not been reflected in a large number of practical applications used by domain experts. This bottleneck is in a significant part due to lack of interpretability of the non-linear models derived from data. This lecture will review five broad categories of interpretability in machine learning - nomograms, rule induction, fuzzy logic, graphical models & topographic mapping. Links between the different approaches will be made around the common theme of designing interpretability into the structure of machine learning models, then using the armoury of advanced analytical methods to achieve generic non-linear approximation capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.7 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { if(buybox) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lisboa, P.J.G.: Industrial use of safety-related artificial neural networks. HSE CR 237/2001, HMSO (2001), http://www.hse.gov.uk/research/crr_pdf/2001/crr01327.pdf

  2. Lisboa, P.J.G.: A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Networks 15(1), 9–37 (2002)

    Article  Google Scholar 

  3. Lisboa, P.J.G., Taktak, A.F.G.: The use of artificial neural networks in decision support in cancer: A systematic review. Neural Networks 19(4), 408–415 (2006)

    Article  MATH  Google Scholar 

  4. Chiu, S.: Developing commercial applications of intelligent control. IEEE Control Syst. Mag. 17(2), 94–100 (1997)

    Article  MathSciNet  Google Scholar 

  5. Vellido, A., Lisboa, P.J.G.: Handling outliers in brain tumour MRS data analysis through robust topographic mapping. Computers in Biology and Medicine 36(10), 1049–1063 (2006)

    Article  Google Scholar 

  6. Van Belle, V., Lisboa, P.J.G.: Research Directions in Interpretable Machine Learning. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, April 24-26, pp. 191–196 (2013)

    Google Scholar 

  7. Breiman, L.: Statistical Modeling: The Two Cultures. Statistical Science 16(3), 199–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bacciu, D., Lisboa, P.J.G., Sperdutti, A., Villmann, T.: Probabilistic Modelling in Machine Learning. In: Alippi, C., et al. (eds.) Handbook on Computational Intelligence. Springer (accepted, 2013)

    Google Scholar 

  9. Lisboa, P.J.G., Ellis, I.O., Green, A.R., Ambrogi, F., Dias, M.B.: Cluster-based visualisation with scatter matrices. Pattern Recognition Letters 29(13), 1814–1823 (2008)

    Article  Google Scholar 

  10. Bartholomew, Knott, Moustaki: Latent Variable Models and Factor Analysis: A Unified Approach, 3rd edn. (2011)

    Google Scholar 

  11. Gorban, A.N., Zinovyev, A.: Principal manifolds and graphs in practice: from molecular biology to dynamical systems. International Journal of Neural Systems 20(3), 219–232 (2010)

    Article  Google Scholar 

  12. Etchells, T.A., Lisboa, P.J.G.: Orthogonal search-based rule extraction (OSRE) from trained neural networks: A practical and efficient approach. IEEE Transactions on Neural Networks 17(2), 374–384 (2006)

    Article  Google Scholar 

  13. Rögnvaldsson, T., Etchells, T.A., You, L., Garwicz, D., Jarman, I.H., Lisboa, P.J.G.: How to find simple and accurate rules for viral protease cleavage specificities. BMC Bioinformatics 10, 149 (2009)

    Article  Google Scholar 

  14. Lisboa, P.J.G., Etchells, T.A., Pountney, D.C.: Minimal MLPs do not model the XOR logic. Neurocomputing, Rapid Communication 48(1-4), 1033–1037 (2002)

    Article  MATH  Google Scholar 

  15. Jarman, I.H., Etchells, T.A., Martín, J.D., Lisboa, P.J.G.: An integrated framework for risk profiling of breast cancer patients following surgery. Artificial Intelligence in Medicine 42, 165–188 (2008)

    Article  Google Scholar 

  16. Bacciu, D., Etchells, T.A., Lisboa, P.J.G., Whittaker, J.: Efficient identification of independence networks using mutual information. Computational Statistics 28(2), 621–646 (2013)

    Article  MathSciNet  Google Scholar 

  17. Fernandez, F., Duarte, A., Sanchez, A.: Optimization of the Fuzzy Partition of a Zero-order Takagi-Sugeno Model. In: Proc. Eleventh International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU 2006), vol. I, pp. 898–905. Editions EDK (2006)

    Google Scholar 

  18. López de Mántaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M.-L., Cox, M., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse, revision, and retention in case-based reasoning. Knowledge Engineering Review 20(3), 215–240 (2005)

    Article  Google Scholar 

  19. Dutta, S., Bonissone, P.: Integrating Case Based And Rule Based Reasoning: The Possibilistic Connection. In: Proc. 6th Conference on Uncertainty in AI, Cambridge, MA, July 27-29, pp. 290–300 (1990)

    Google Scholar 

  20. Van Belle, V., Lisboa, P.J.G.: Automated Selection of Interaction Effects in Sparse Kernel Methods to Predict Pregnancy Viability. In: IEEE Symposium Series on Computational Intelligence, Singapore, April 16-19 (2013)

    Google Scholar 

  21. Ruiz, H., Etchells, T.A., Jarman, I.H., Martín, J.D., Lisboa, P.J.G.: A principled approach to network-based classification and data representation. Neurocomputing 112, 79–91 (2013)

    Article  Google Scholar 

  22. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Lisboa, P.J.G. (2013). Interpretability in Machine Learning – Principles and Practice . In: Masulli, F., Pasi, G., Yager, R. (eds) Fuzzy Logic and Applications. WILF 2013. Lecture Notes in Computer Science(), vol 8256. Springer, Cham. https://doi.org/10.1007/978-3-319-03200-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03200-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03199-6

  • Online ISBN: 978-3-319-03200-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation