Skip to main content

Advertisement

Log in

Multicolor karyotype analyses of mouse embryonic stem cells

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The manipulation of embryonic stem (ES) cells to introduce directional genetic changes into the genome of mice has become an important tool in biomedical research. Monitoring of cell morphology before and after DNA manipulation and special culture conditions are a prerequisite to preserve the pluripotent properties of ES cells and thus their ability to generate chimera and effective germline transmission (GLT). It has been reported that prolonged cell culturing may affect the diploid chromosomal composition of cells and therefore the percentage of chimerism and GLT. Herein, we report multicolor-fluorescence in situ hybridization (M-FISH) analysis of four different ES cell lines/clones. Although the morphology of all four ES cell lines/clones appeared normal and all four expressed the early markers Oct-3/4 and Nanog, two cell lines presented consistent numerical and structural chromosome aberrations. We demonstrate that M-FISH is a sensitive and accurate method for a comprehensive karyotype analysis of ES cells and may minimize time, costs, and disappointment due to inadequate ES cell sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, D. G.; Willington, M. A.; Findlay, I.; Muggleton-Harris, A. L. Criteria that optimize the potential of murine embryonic stem cells for in vitro and in vivo developmental studies. In Vitro Cell Dev. Biol. 28A:773–778; 1992.

    PubMed  CAS  Google Scholar 

  • Cho, C.; Willis, W. D.; Goulding, E. H.; Jung-Ha, H.; Choi, Y. C.; Hecht, N. B.; Eddy, E. M. Haploinsufficiency of protamine-1 or-2 causes infertility in mice. Nat. Genet. 28:82–86; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Dean, W.; Bowden, L.; Aitchison, A.; Klose, J.; Moore, T.; Meneses, J. J.; Reik, W.; Feil, R. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125:2273–2282; 1998.

    PubMed  CAS  Google Scholar 

  • Draper, J. S.; Smith, K.; Gokhale, P.; Moore, H. D.; Maltby, E.; Johnson, J.; Meisner, L.; Zwaka, T. P.; Thomson, J. A.; Andrews, P. W. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22:53–54; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. J.; Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, I.; Geigl, J.; Klein, C. A.; Speicher, M. R. Seven-fluorochrome mouse M-FISH for high-resolution analysis of interchromosomal rearrangements. Cytogenet. Genome Res. 103:84–88; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X.; Wu, H.; Loring, J.; Hormuzdi, S.; Disteche, C. M.; Bornstein, P.; Jaenisch, R. Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev. Dyn. 209:85–91; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Longo, L.; Bygrave, A.; Grosveld, F. G.; Pandolfi, P. P. The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res. 6:321–328; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78:7634–7638; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, A.; Rossant, J.; Nagy, R.; Abramow-Newerly, W.; Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90:8424–8428; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, J.; Evans, E. P.; Smith, A. G. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110:1341–1348; 1990.

    PubMed  CAS  Google Scholar 

  • Pease, S.; Braghetta, P.; Gearing, D.; Grail, D.; Williams, R. L. Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev. Biol. 141:344–352; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Rathjen, P. D.; Toth, S.; Willis, A.; Heath, J. K.; Smith A. G. Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62:1105–1114; 1990a.

    Article  PubMed  CAS  Google Scholar 

  • Rathjen, P. D.; Nichols, J.; Toth, S.; Edwards, D. R.; Heath, J. K.; Smith, A. G. Developmentally programmed induction of differentiation inhibiting activity and the control of stem cell populations. Genes Dev. 4:2308–2318; 1990b.

    PubMed  CAS  Google Scholar 

  • Robertson, E.; Bradley, A.; Kuehn, M.; Evans, M. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. G.; Heath, J. K.; Donaldson, D. D.; Wong, G. G.; Moreau, J.; Stahl, M.; Rogers, D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H.; Kamada, N.; Ueda, O.; Jishage, K.; Kurihara, Y.; Kurihara, H.; Terauchi, Y.; Azuma, S.; Kadowaki, T.; Kodama, T.; Yazaki, Y.; Toyoda, Y. Germ-line contribution of embryonic stem cells in chimeric mice: influence of karyotype and in vitro differentiation ability. Exp. Anim. 46:17–23; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, P.; Mann, J. R. Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 120:1651–1660; 1994.

    PubMed  CAS  Google Scholar 

  • Ward, C. M.; Stern, P.; Willington, M. A.; Flenniken, A. M. Efficient germline transmission of mouse embryonic stem cells grown in synthetic serum in the absence of a fibroblast feeder layer. Lab. Invest. 82:1765–1767; 2002.

    PubMed  Google Scholar 

  • Williams, R. L.; Hilton, D. J.; Pease, S.; Willson, T. A.; Stewart, C. L.; Gearing, D. P.; Wagner, E. F.; Metcalf, D.; Nicola, N. A.; Gough, N. M. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Ying, Q. L.; Nichols, J.; Chambers, I.; Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292; 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes W. G. Janssen.

Additional information

Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Jauch, A., Holtgreve-Grez, H. et al. Multicolor karyotype analyses of mouse embryonic stem cells. In Vitro Cell.Dev.Biol.-Animal 41, 278–283 (2005). https://doi.org/10.1290/990771.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/990771.1

Key words

Navigation