射影幾何学において、n 次元射影空間射影変換(しゃえいへんかん)とは、射影空間の同型写像である。図学的には中心投影変換に相当する[1]

定義

編集

k 上の n 次元射影空間 Pn(k) とは、ベクトル空間 kn+1 から原点を除いた空間を体 k の乗法群 k* のスカラー倍の作用で割った空間   のことである。すると、kn+1 の間の同型写像 f は、スカラー倍と可換であり、また 0 でないベクトルを 0 でないベクトルに写すから、Pn(k) の間の同型写像を誘導する。これが Pn(k) の射影変換である。

関連項目

編集

脚注

編集

参考文献

編集
  • 佐武一郎『線型代数学』(第66版)裳華房〈数学選書1〉、2009年。ISBN 978-4-7853-1301-2 
  • 島田静雄『CAD・CGのための基礎数学』共立出版〈インターネット時代の数学シリーズ 7〉、2000年。ISBN 978-4-320-01646-0