-
Notifications
You must be signed in to change notification settings - Fork 6
/
mainReconstructSequence.py
242 lines (187 loc) · 11.7 KB
/
mainReconstructSequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torch
import sys
from torch.utils import data
from torch.utils.data.sampler import SequentialSampler
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import autocast,GradScaler
import torchvision as tv
import torch.nn as nn
import matplotlib.pyplot as plt
import subprocess
import os
import numpy as np
from datetime import datetime
import argparse
import zipfile
from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM
from nets.XLFMNet import XLFMNet
import utils.pytorch_shot_noise as pytorch_shot_noise
from utils.XLFMDataset import XLFMDatasetFull
from utils.misc_utils import *
from tifffile import imsave
# Arguments
parser = argparse.ArgumentParser()
parser.add_argument('--data_folder', nargs='?', default= '')
parser.add_argument('--lenslet_file', nargs='?', default= "lenslet_centers_python.txt")
parser.add_argument('--files_to_store', nargs='+', default=['mainTrainXLFMNet.py','mainTrainSLNet.py','mainCreateDataset.py','utils/XLFMDataset.py','utils/misc_utils.py','nets/extra_nets.py','nets/XLFMNet.py','nets/SLNet.py'])
parser.add_argument('--prefix', nargs='?', default= "fishy")
# parser.add_argument('--checkpoint', nargs='?', default= "/space/vizcainj/shared/XLFMNet/runs/camera_ready_github_Apr/2021_05_03__18:56:00__b'3b27809'_commit__3D_deconv_Final/model_")#runs_dir + 'paper/exp3_SDLFM_3Frame/individual_training/both/2020_11_24__09:24:500_gpu__Aug_unetD2_wf5___1e-4_lessNoise_realImgs_Shuffle_realPower_imgLoss0_MaxPool_DO25_batch8_50imgs1036job/model_')
parser.add_argument('--checkpoint', nargs='?', default= "")
parser.add_argument('--images_to_use', nargs='+', type=int, default=list(range(0,121,1)))
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--use_random_shifts', nargs='+', type=int, default=0, help='Randomize the temporal shifts to use? 0 or 1')
parser.add_argument('--dark_current', type=float, default=106, help='Dark current value of camera.')
parser.add_argument('--output_path', nargs='?', default='out')
parser.add_argument('--main_gpu', nargs='+', type=int, default=[1])
parser.add_argument('--writeToVideo', type=int, default=1)
parser.add_argument('--writeVolsToStack', type=int, default=1)
parser.add_argument('--write_to_tb', type=int, default=0)
parser.add_argument('--fps', type=int, default=25.0)
parser.add_argument('--video_multiplyer', type=int, default=2)
debug = False
n_threads = 0
args = parser.parse_args()
if len(args.main_gpu)>0:
device = "cuda:" + str(args.main_gpu[0])
else:
device = "cuda"
args.main_gpu = [1]
if n_threads!=0:
torch.set_num_threads(n_threads)
torch.manual_seed(261290)
# Load previous checkpoints
if len(args.checkpoint)>0:
checkpoint_XLFMNet = torch.load(args.checkpoint, map_location=device)
args_deconv = checkpoint_XLFMNet['args']
args_SLNet = checkpoint_XLFMNet['args_SLNet']
# Get commit number
label = subprocess.check_output(["git", "describe", "--always"]).strip()
save_folder = args.output_path + datetime.now().strftime('%Y_%m_%d__%H:%M:%S') + '__' + str(label) + '_commit__' + args.prefix
# Get size of the volume
subimage_shape = args_SLNet.subimage_shape
# Create dataloaders
dataset = XLFMDatasetFull(args.data_folder, args.lenslet_file, subimage_shape, img_shape=[2160,2160],
images_to_use=args.images_to_use, divisor=1, isTiff=True, n_frames_net=args_SLNet.n_frames, lenslets_offset=0,
load_all=True, load_vols=False, load_sparse=False, temporal_shifts=args_SLNet.temporal_shifts, use_random_shifts=args_SLNet.use_random_shifts, eval_video=True)
dataset_size = len(dataset)
test_indices = list(range(dataset_size))
train_sampler = SequentialSampler(dataset)
test_loader = data.DataLoader(dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=0, shuffle=False)
# Get normalization values
max_images,max_images_sparse,max_volumes = dataset.get_max()
stats = checkpoint_XLFMNet['statistics']#dataset.get_statistics()
n_lenslets = dataset.len_lenslets()
# Create net
net = XLFMNet(n_lenslets, args_deconv.output_shape, n_temporal_frames=dataset.n_frames, dataset=dataset,
use_bias=args_deconv.use_bias, unet_settings=args_deconv.unet_settings).to(device)
# timers
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start_epoch = 0
if len(args.checkpoint)>0:
net.load_state_dict(checkpoint_XLFMNet['model_state_dict'], strict=False)
# Create summary writer to log stuff
if debug is False:
writer = SummaryWriter(log_dir=save_folder)
writer.add_text('arguments',str(vars(args)),0)
writer.flush()
# Store files
zf = zipfile.ZipFile(save_folder + "/files.zip", "w")
for ff in args.files_to_store:
zf.write(ff)
zf.close()
if args.writeVolsToStack>0:
os.makedirs(save_folder + '/XLFM_stack_S/')
# Update noramlization stats for SLNet inside network
net.stats = stats
net = net.eval()
# Store times
mean_time = 0
if len(args.main_gpu)>1:
net = nn.DataParallel(net, args.main_gpu, args.main_gpu[0])
if args.writeToVideo>0:
video_logs = {'input_frames' : torch.zeros([1, dataset_size, 1, dataset.img_shape[0], dataset.img_shape[1]]),
'sparse_reconstruction' : torch.zeros([1, dataset_size, 1, dataset.img_shape[0], dataset.img_shape[1]]),
'dense_reconstruction' : torch.zeros([1, dataset_size, 1, dataset.img_shape[0], dataset.img_shape[1]]),
'MIP_sparse_3D_reconstruction': torch.zeros([1, dataset_size, 1, args_deconv.output_shape[0] + args_deconv.output_shape[2], args_deconv.output_shape[1] + args_deconv.output_shape[2]])
}
with torch.no_grad():
for ix,(curr_img_stack, local_volumes) in enumerate(test_loader):
# curr_img_stack returns both the dense and the sparse images, here we only need the sparse.
if len(curr_img_stack.shape)>=5:
# assert len(curr_img_stack.shape)>=5, "If sparse is used curr_img_stack should contain both images, dense and sparse stacked in the last dim."
curr_img_sparse = curr_img_stack[...,-1].clone().to(device)
curr_img_stack = curr_img_stack[...,0].clone().to(device)
else:
curr_img_sparse = curr_img_stack.clone().to(device)
curr_img_stack = curr_img_stack.half().to(device)
local_volumes = local_volumes.half().to(device)
curr_img_stack -= args.dark_current
curr_img_stack = F.relu(curr_img_stack).detach()
curr_img_stack, _ = normalize_type(curr_img_stack, local_volumes, stats['norm_type_img'], stats['mean_imgs'], stats['std_images'], stats['mean_vols'], stats['std_vols'], stats['max_images'], stats['max_vols'])
with autocast():
start.record()
# Run batch of predicted images in discriminator
prediction,sparse_prediction = net(curr_img_stack)
if not all([prediction.shape[i] == subimage_shape[i-2] for i in range(2,4)]):
diffY = (subimage_shape[0] - prediction.size()[2])
diffX = (subimage_shape[1] - prediction.size()[3])
prediction = F.pad(prediction, (diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2))
# Record training time
end.record()
torch.cuda.synchronize()
end_time = start.elapsed_time(end)
mean_time += end_time
# Use only first sparse image, corresponding to the selected volume.
if net_get_params(net).n_frames>1:
curr_img_sparse = curr_img_sparse[:,0,...].unsqueeze(1)
if args.writeToVideo>0:
video_logs['input_frames'][0,ix,...] = curr_img_stack[0,0,...]
video_logs['sparse_reconstruction'][0,ix,...] = curr_img_sparse[0,0,...]
video_logs['dense_reconstruction'][0,ix,...] = torch.nn.functional.relu(curr_img_sparse[0,0,...]-curr_img_sparse[0,0,...])
video_logs['MIP_sparse_3D_reconstruction'][0,ix,...] = volume_2_projections(prediction.permute(0,2,3,1).unsqueeze(1))[0,0,...]
if args.writeVolsToStack>0:
imsave(save_folder + '/XLFM_stack_S/XLFM_stack_'+ "%03d" % ix + '.tif', prediction[0,...].cpu().numpy())
# plt.clf()
# plt.subplot(1,3,1)
# plt.imshow(curr_img_stack[0,0,...].float().cpu().detach().numpy())
# plt.subplot(1,3,2)
# plt.imshow(curr_img_sparse[0,0,...].float().cpu().detach().numpy())
# plt.subplot(1,3,3)
# plt.imshow(volume_2_projections(prediction.permute(0,2,3,1).unsqueeze(1))[0,0,...].float().detach().cpu().numpy())
# plt.title('Time: '+str(int(end_time)) + ' ms')
# plt.show()
# Extract lenslet images
curr_img_sparse = dataset.extract_views(curr_img_sparse, dataset.lenslet_coords, dataset.subimage_shape)[:,0,...]
if args.write_to_tb:
if local_volumes.shape == prediction.shape:
writer.add_image('max_GT__eval', tv.utils.make_grid(volume_2_projections(local_volumes.permute(0,2,3,1).unsqueeze(1))[0,...], normalize=True, scale_each=True), ix)
writer.add_image('sum_GT__eval', tv.utils.make_grid(volume_2_projections(local_volumes.permute(0,2,3,1).unsqueeze(1), proj_type=torch.sum)[0,...], normalize=True, scale_each=True), ix)
writer.add_image('max_prediction__eval', tv.utils.make_grid(volume_2_projections(prediction.permute(0,2,3,1).unsqueeze(1))[0,...], normalize=True, scale_each=True), ix)
writer.add_image('sum_prediction__eval', tv.utils.make_grid(volume_2_projections(prediction.permute(0,2,3,1).unsqueeze(1), proj_type=torch.sum)[0,...], normalize=True, scale_each=True), ix)
# input_noisy_grid = tv.utils.make_grid(curr_img_stack[0,0,...].float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False)
sparse_prediction = sparse_prediction- sparse_prediction.min()
sparse_prediction /= sparse_prediction.max()
input_intermediate_sparse_grid = tv.utils.make_grid(sparse_prediction[0,10,...].float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False)
input_GT_sparse_grid = tv.utils.make_grid(curr_img_sparse[0,10,...].float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False)
# volGTHist,volPredHist,inputHist = compute_histograms(local_volumes[0,...].float(), prediction[0,...].float(), curr_img_stack[0,...].float())
# writer.add_image('input_noisy_'+curr_train_stage, input_noisy_grid, ix)
writer.add_image('image_intermediate_sparse_eval', input_intermediate_sparse_grid, ix)
writer.add_image('image_intermediate_sparse_GT_eval', input_GT_sparse_grid, ix)
# writer.add_scalar('Loss/_eval', ix)
# writer.add_scalar('psnr/_eval', mean_psnr, ix)
writer.add_scalar('times/_eval', mean_time, ix)
if args.writeToVideo==1:
from cv2 import VideoWriter, VideoWriter_fourcc
import cv2
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
for vid_path,video_tensor in video_logs.items():
video_tensor.clamp_(min=0, max=video_tensor.max().item()/args.video_multiplyer)
video_tensor /= video_tensor.max()
curr_writer = VideoWriter(save_folder + '/' + vid_path + '.avi', fourcc, args.fps, (video_tensor.shape[4], video_tensor.shape[3]), 0)
for nFrame in range(video_tensor.shape[1]):
gray = (255*video_tensor[0,nFrame,0,...]).numpy().astype(np.uint8)#cv2.normalize(video_input[0,nFrame,0,...].numpy(), None, 255, 0, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
curr_writer.write(gray)
curr_writer.release()