-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_prep_m2D3D.m
executable file
·140 lines (127 loc) · 6.39 KB
/
main_prep_m2D3D.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
%% ADD PATHS
clear all except codeFolder;
close all;
if ~exist('codeFolder','var')
codeFolder = '/Users/kohler/code';
rcaCodePath = sprintf('%s/git/rcaBase',codeFolder);
addpath(genpath(rcaCodePath));
addpath(genpath(sprintf('%s/git/mrC',codeFolder)));
addpath(genpath(sprintf('%s/git/schlegel/matlab_lib',codeFolder)));
else
end
setenv('DYLD_LIBRARY_PATH','')
%% IDENTIFY DATA LOCATION
folderNames =[];
expIdx = [];
adultExp = [1,2,3,4,5];
topFolder = '/Volumes/svndl/FinishedExperiments/2018_Kohler_NatureCommunications';
for z=1:length(adultExp) % load all adult experiments
dataLocation(z) = subfolders(sprintf('%s/exp%0.0f*',topFolder,adultExp(z)),1);
folderNames=[folderNames;subfolders(sprintf('%s/*20*',dataLocation{z}),1)];
expIdx=[expIdx; adultExp(z) * ones(size(subfolders(sprintf('%s/*20*',dataLocation{z}))))];
end
% go deeper into the folder names
for f = 1:length(folderNames)
tempFolders = subfolders(folderNames{f},1);
tempFolders = tempFolders(cellfun(@(x) isempty(strfind(x,'mff')),tempFolders));
folderNames{f} = sprintf('%s/Exp_TEXT_HCN_128_Avg',tempFolders{end});
end
%% SETUP INPUTS
binsToUse=1:10; % indices of bins to include in analysis (the values must be present in the bin column of all DFT/RLS exports)
freqsToUse= 1:4; % indices of frequencies to include in analysis (the values must be present in the frequency column of all DFT/RLS exports)
trialsToUse = []; % subset of trials to use for analysis (if set to false or empty, all trials will be used)
condsToUse = 1:8; % if you want to include all conditions, create a vector here listing all condition numbers
nReg=7; % RCA regularization constant (7-9 are typical values, but see within-trial eigenvalue plot in rca output)
nComp=7; % number of RCs that you want to look at (3-5 are good values, but see across-trial eigenvalue plot in rca output)
nFreq = length(freqsToUse);
nCond = length(condsToUse);
chanToCompare = 75; % channel to use for a performance evaluation, can be []
dataType = 'RLS'; % can also be 'DFT' if you have DFT exports
rcPlotStyle = 'matchMaxSignsToRc1'; % not req'd. see 'help rcaRun', can be: 'matchMaxSignsToRc1' (default) or 'orig'
forceSourceData = false; % generate source data for first instance of rca?
%% RUN RCA
for e = 1:length(adultExp)
doExp = adultExp(e);
fprintf('\n ... running exp %0.0f ...\n',doExp);
saveLocation = sprintf('%s/figures/exp%d',topFolder,doExp);
if ~exist(saveLocation,'dir')
mkdir(saveLocation);
else
end
subsToUse = ismember(expIdx,doExp);
% do RCA on all DATA
if doExp == 1
% only run allRCA if doing Experiment 1
allRCA = rcaSweep(folderNames,binsToUse,freqsToUse,condsToUse,trialsToUse,nReg,nComp,dataType,chanToCompare,[],rcPlotStyle,forceSourceData);
allLocation = saveLocation;
rcaH = grabCovFig(gcf);
export_fig(sprintf('%s/allRCA_cov.pdf',saveLocation),'-pdf','-transparent',rcaH);
close all;
else
end
% do full RCA
fullRCA = rcaSweep(folderNames(subsToUse),binsToUse,freqsToUse,condsToUse,trialsToUse,nReg,nComp,dataType,chanToCompare,[],rcPlotStyle,false);
rcaH = grabCovFig(gcf);
export_fig(sprintf('%s/fullRCA_cov.pdf',saveLocation),'-pdf','-transparent',rcaH);
close all;
for f=1:length(freqsToUse)
readyRCA(f) = rcaSweep(folderNames(subsToUse),binsToUse,freqsToUse(f),condsToUse,trialsToUse,nReg,nComp,dataType,chanToCompare,[],rcPlotStyle);
rcaH = grabCovFig(gcf);
export_fig(sprintf('%s/freq%dRCA_cov.pdf',saveLocation,f),'-pdf','-transparent',rcaH);
close all;
end
% absord fullRCA and allRCA in readyRCA
readyRCA = [readyRCA,fullRCA];
clear fullRCA;
% select subjects from current experiment
for f = 1:length(allRCA);
fIdx = length(freqsToUse)*2+f;
readyRCA(fIdx) = allRCA(f);
readyRCA(fIdx).data = allRCA(f).data(:,subsToUse);
readyRCA(fIdx).comparisonData = allRCA(f).comparisonData(:,subsToUse);
readyRCA(fIdx).inputData = allRCA(f).inputData(:,subsToUse);
readyRCA(fIdx).noiseData.lowerSideBand = allRCA(f).noiseData.lowerSideBand(:,subsToUse);
readyRCA(fIdx).noiseData.higherSideBand = allRCA(f).noiseData.higherSideBand(:,subsToUse);
readyRCA(fIdx).comparisonNoiseData.lowerSideBand = allRCA(f).comparisonNoiseData.lowerSideBand(:,subsToUse);
readyRCA(fIdx).comparisonNoiseData.higherSideBand = allRCA(f).comparisonNoiseData.higherSideBand(:,subsToUse);
end
zeroData = cellfun(@(x) any(x(:)==0), cat(1,readyRCA(:).data));
if any(zeroData(:))
error('data values exactly zero, this should not happen');
else
end
%% COMPUTE VALUES FOR PLOTTING
keepConditions = true;
errorType = 'SEM';
trialError = false;
doNR = false(4,8,8); % 4 freqs, 8 RCs (with comparison), 8 conditions
doNR([1,2,4],1,:) = true; % do fitting for first RC, first, second and fourth harmonic, all conditions
for f = 1:length(readyRCA)
fprintf('\n ... rc no. %0.0f ...\n',f);
rcStruct = aggregateData(readyRCA(f),keepConditions,errorType,trialError,doNR);
% RC
readyRCA(f).stats.Amp = squeeze(rcStruct.ampBins);
readyRCA(f).stats.SubjectAmp = squeeze(rcStruct.subjectAmp);
readyRCA(f).stats.ErrLB = squeeze(rcStruct.ampErrBins(:,:,:,:,1));
readyRCA(f).stats.ErrUB = squeeze(rcStruct.ampErrBins(:,:,:,:,2));
readyRCA(f).stats.NoiseAmp = squeeze(rcStruct.ampNoiseBins);
readyRCA(f).stats.SubjectNoiseAmp = squeeze(rcStruct.subjectAmpNoise);
% Naka-Rushton
readyRCA(f).stats.NR_Params = squeeze(rcStruct.NakaRushton.Params);
readyRCA(f).stats.NR_R2 = squeeze(rcStruct.NakaRushton.R2);
readyRCA(f).stats.NR_JKSE = squeeze(rcStruct.NakaRushton.JackKnife.SE);
readyRCA(f).stats.NR_JKParams = squeeze(rcStruct.NakaRushton.JackKnife.Params);
readyRCA(f).stats.hModel = rcStruct.NakaRushton.hModel;
% t-values
readyRCA(f).stats.tSqrdP = squeeze(rcStruct.tSqrdP);
readyRCA(f).stats.tSqrdSig = squeeze(rcStruct.tSqrdSig);
readyRCA(f).stats.tSqrdVal = squeeze(rcStruct.tSqrdVal);
end
% shut down parallel pool, which was used for fitting Naka-Rushton
delete(gcp('nocreate'));
clc;
%% SAVE THE DATA, SEPARATELY FOR EACH EXPERIMENT
saveFileName = sprintf('%s/rcaData',saveLocation);
save(saveFileName,'readyRCA')
clear readyRCA;
end