Official implementation for "Semantic Line Detection Using Mirror Attention and Comparative Ranking and Matching" [paper] [supp] [video] [arxiv].
Source code for baseline method (SLNet) is available in here.
Also, more recent work can be found in here.
- PyTorch 1.3.1
- CUDA 10.0
- CuDNN 7.6.5
- python 3.6
Create conda environment:
$ conda create -n DRM python=3.6 anaconda
$ conda activate DRM
$ pip install opencv-python==3.4.2.16
$ conda install pytorch==1.3.1 torchvision cudatoolkit=10.0 -c pytorch
Download repository:
$ git clone https://github.com/dongkwonjin/Semantic-Line-DRM.git
- Download the following datasets to
root/
.SEL
andSEL_Hard
are datasets for semantic line detection. Others are datasets for applications. We obtain the edge detection results inedge
folder, by employing HED algorithm.
Dataset | Custom | Original path |
---|---|---|
SEL | Download | here |
SEL_Hard | Download | |
AVA landscape | Download | here |
ICCV | Download | here |
NYU | Download | here |
SYM_Hard | Download |
- Download our model parameters to
root/(task_folder_name)/
if you want to get the performance of the paper.
Task | Model parameters |
---|---|
Semantic line detection | Download |
Dominant parallel line detection | Download |
Reflection symmetry axis detection | Download |
-
Edit
config.py
. Please modifydataset_dir
andpaper_weight_dir
. If you want to get the performance of the paper, please inputrun_mode
to 'test_paper'. -
Run with
cd Semantic-Line-DRM-master/(task_folder_name)/(model_folder_name)/code/
python main.py
@Inproceedings{
Jin2020DRM,
title={Semantic Line Detection Using Mirror Attention and Comparative Ranking and Matching},
author={Dongkwon Jin, Jun-Tae Lee, and Chang-Su Kim},
booktitle={ECCV},
year={2020}
}