-
Notifications
You must be signed in to change notification settings - Fork 0
/
bwtsw2_core.c
616 lines (589 loc) · 18.5 KB
/
bwtsw2_core.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/resource.h>
#include <assert.h>
#include "bwt_lite.h"
#include "bwtsw2.h"
#include "bwt.h"
#include "kvec.h"
#include "utils.h"
typedef struct {
bwtint_t k, l;
} qintv_t;
#define qintv_eq(a, b) ((a).k == (b).k && (a).l == (b).l)
#define qintv_hash(a) ((a).k>>7^(a).l<<17)
#include "khash.h"
KHASH_INIT(qintv, qintv_t, uint64_t, 1, qintv_hash, qintv_eq)
KHASH_MAP_INIT_INT64(64, uint64_t)
#define MINUS_INF -0x3fffffff
#define MASK_LEVEL 0.90f
struct __mempool_t;
static void mp_destroy(struct __mempool_t*);
typedef struct {
bwtint_t qk, ql;
int I, D, G;
uint32_t pj:2, qlen:30;
int tlen;
int ppos, upos;
int cpos[4];
} bsw2cell_t;
#include "ksort.h"
KSORT_INIT_GENERIC(int)
#define __hitG_lt(a, b) (((a).G + ((int)(a).n_seeds<<2)) > (b).G + ((int)(b).n_seeds<<2))
KSORT_INIT(hitG, bsw2hit_t, __hitG_lt)
static const bsw2cell_t g_default_cell = { 0, 0, MINUS_INF, MINUS_INF, MINUS_INF, 0, 0, 0, -1, -1, {-1, -1, -1, -1} };
typedef struct {
int n, max;
uint32_t tk, tl; // this is fine
bsw2cell_t *array;
} bsw2entry_t, *bsw2entry_p;
/* --- BEGIN: Stack operations --- */
typedef struct {
int n_pending;
kvec_t(bsw2entry_p) stack0, pending;
struct __mempool_t *pool;
} bsw2stack_t;
#define stack_isempty(s) (kv_size(s->stack0) == 0 && s->n_pending == 0)
static void stack_destroy(bsw2stack_t *s) { mp_destroy(s->pool); kv_destroy(s->stack0); kv_destroy(s->pending); free(s); }
inline static void stack_push0(bsw2stack_t *s, bsw2entry_p e) { kv_push(bsw2entry_p, s->stack0, e); }
inline static bsw2entry_p stack_pop(bsw2stack_t *s)
{
assert(!(kv_size(s->stack0) == 0 && s->n_pending != 0));
return kv_pop(s->stack0);
}
/* --- END: Stack operations --- */
/* --- BEGIN: memory pool --- */
typedef struct __mempool_t {
int cnt; // if cnt!=0, then there must be memory leak
kvec_t(bsw2entry_p) pool;
} mempool_t;
inline static bsw2entry_p mp_alloc(mempool_t *mp)
{
++mp->cnt;
if (kv_size(mp->pool) == 0) return (bsw2entry_t*)xcalloc(1, sizeof(bsw2entry_t));
else return kv_pop(mp->pool);
}
inline static void mp_free(mempool_t *mp, bsw2entry_p e)
{
--mp->cnt; e->n = 0;
kv_push(bsw2entry_p, mp->pool, e);
}
static void mp_destroy(struct __mempool_t *mp)
{
int i;
for (i = 0; i != kv_size(mp->pool); ++i) {
free(kv_A(mp->pool, i)->array);
free(kv_A(mp->pool, i));
}
kv_destroy(mp->pool);
free(mp);
}
/* --- END: memory pool --- */
/* --- BEGIN: utilities --- */
static khash_t(64) *bsw2_connectivity(const bwtl_t *b)
{
khash_t(64) *h;
uint32_t k, l, cntk[4], cntl[4]; // this is fine
uint64_t x;
khiter_t iter;
int j, ret;
kvec_t(uint64_t) stack;
kv_init(stack);
h = kh_init(64);
kh_resize(64, h, b->seq_len * 4);
x = b->seq_len;
kv_push(uint64_t, stack, x);
while (kv_size(stack)) {
x = kv_pop(stack);
k = x>>32; l = (uint32_t)x;
bwtl_2occ4(b, k-1, l, cntk, cntl);
for (j = 0; j != 4; ++j) {
k = b->L2[j] + cntk[j] + 1;
l = b->L2[j] + cntl[j];
if (k > l) continue;
x = (uint64_t)k << 32 | l;
iter = kh_put(64, h, x, &ret);
if (ret) { // if not present
kh_value(h, iter) = 1;
kv_push(uint64_t, stack, x);
} else ++kh_value(h, iter);
}
}
kv_destroy(stack);
//fprintf(stderr, "[bsw2_connectivity] %u nodes in the DAG\n", kh_size(h));
return h;
}
// pick up top T matches at a node
static void cut_tail(bsw2entry_t *u, int T, bsw2entry_t *aux)
{
int i, *a, n, x;
if (u->n <= T) return;
if (aux->max < u->n) {
aux->max = u->n;
aux->array = (bsw2cell_t*)xrealloc(aux->array, aux->max * sizeof(bsw2cell_t));
}
a = (int*)aux->array;
for (i = n = 0; i != u->n; ++i)
if (u->array[i].ql && u->array[i].G > 0)
a[n++] = -u->array[i].G;
if (n <= T) return;
x = -ks_ksmall(int, n, a, T);
n = 0;
for (i = 0; i < u->n; ++i) {
bsw2cell_t *p = u->array + i;
if (p->G == x) ++n;
if (p->G < x || (p->G == x && n >= T)) {
p->qk = p->ql = 0; p->G = 0;
if (p->ppos >= 0) u->array[p->ppos].cpos[p->pj] = -1;
}
}
}
// remove duplicated cells
static inline void remove_duplicate(bsw2entry_t *u, khash_t(qintv) *hash)
{
int i, ret, j;
khiter_t k;
qintv_t key;
kh_clear(qintv, hash);
for (i = 0; i != u->n; ++i) {
bsw2cell_t *p = u->array + i;
if (p->ql == 0) continue;
key.k = p->qk; key.l = p->ql;
k = kh_put(qintv, hash, key, &ret);
j = -1;
if (ret == 0) {
if ((uint32_t)kh_value(hash, k) >= p->G) j = i;
else {
j = kh_value(hash, k)>>32;
kh_value(hash, k) = (uint64_t)i<<32 | p->G;
}
} else kh_value(hash, k) = (uint64_t)i<<32 | p->G;
if (j >= 0) {
p = u->array + j;
p->qk = p->ql = 0; p->G = 0;
if (p->ppos >= 0) u->array[p->ppos].cpos[p->pj] = -3;
}
}
}
// merge two entries
static void merge_entry(const bsw2opt_t * __restrict opt, bsw2entry_t *u, bsw2entry_t *v, bwtsw2_t *b)
{
int i;
if (u->n + v->n >= u->max) {
u->max = u->n + v->n;
u->array = (bsw2cell_t*)xrealloc(u->array, u->max * sizeof(bsw2cell_t));
}
for (i = 0; i != v->n; ++i) {
bsw2cell_t *p = v->array + i;
if (p->ppos >= 0) p->ppos += u->n;
if (p->cpos[0] >= 0) p->cpos[0] += u->n;
if (p->cpos[1] >= 0) p->cpos[1] += u->n;
if (p->cpos[2] >= 0) p->cpos[2] += u->n;
if (p->cpos[3] >= 0) p->cpos[3] += u->n;
}
memcpy(u->array + u->n, v->array, v->n * sizeof(bsw2cell_t));
u->n += v->n;
}
static inline bsw2cell_t *push_array_p(bsw2entry_t *e)
{
if (e->n == e->max) {
e->max = e->max? e->max<<1 : 256;
e->array = (bsw2cell_t*)xrealloc(e->array, sizeof(bsw2cell_t) * e->max);
}
return e->array + e->n;
}
static inline double time_elapse(const struct rusage *curr, const struct rusage *last)
{
long t1 = (curr->ru_utime.tv_sec - last->ru_utime.tv_sec) + (curr->ru_stime.tv_sec - last->ru_stime.tv_sec);
long t2 = (curr->ru_utime.tv_usec - last->ru_utime.tv_usec) + (curr->ru_stime.tv_usec - last->ru_stime.tv_usec);
return (double)t1 + t2 * 1e-6;
}
/* --- END: utilities --- */
/* --- BEGIN: processing partial hits --- */
static void save_hits(const bwtl_t *bwt, int thres, bsw2hit_t *hits, bsw2entry_t *u)
{
int i;
uint32_t k; // this is fine
for (i = 0; i < u->n; ++i) {
bsw2cell_t *p = u->array + i;
if (p->G < thres) continue;
for (k = u->tk; k <= u->tl; ++k) {
int beg, end;
bsw2hit_t *q = 0;
beg = bwt->sa[k]; end = beg + p->tlen;
if (p->G > hits[beg*2].G) {
hits[beg*2+1] = hits[beg*2];
q = hits + beg * 2;
} else if (p->G > hits[beg*2+1].G) q = hits + beg * 2 + 1;
if (q) {
q->k = p->qk; q->l = p->ql; q->len = p->qlen; q->G = p->G;
q->beg = beg; q->end = end; q->G2 = q->k == q->l? 0 : q->G;
q->flag = q->n_seeds = 0;
}
}
}
}
/* "narrow hits" are node-to-node hits that have a high score and
* are not so repetitive (|SA interval|<=IS). */
static void save_narrow_hits(const bwtl_t *bwtl, bsw2entry_t *u, bwtsw2_t *b1, int t, int IS)
{
int i;
for (i = 0; i < u->n; ++i) {
bsw2hit_t *q;
bsw2cell_t *p = u->array + i;
if (p->G >= t && p->ql - p->qk + 1 <= IS) { // good narrow hit
if (b1->max == b1->n) {
b1->max = b1->max? b1->max<<1 : 4;
b1->hits = xrealloc(b1->hits, b1->max * sizeof(bsw2hit_t));
}
q = &b1->hits[b1->n++];
q->k = p->qk; q->l = p->ql;
q->len = p->qlen;
q->G = p->G; q->G2 = 0;
q->beg = bwtl->sa[u->tk]; q->end = q->beg + p->tlen;
q->flag = 0;
// delete p
p->qk = p->ql = 0; p->G = 0;
if (p->ppos >= 0) u->array[p->ppos].cpos[p->pj] = -3;
}
}
}
/* after this, "narrow SA hits" will be expanded and the coordinates
* will be obtained and stored in b->hits[*].k. */
int bsw2_resolve_duphits(const bntseq_t *bns, const bwt_t *bwt, bwtsw2_t *b, int IS)
{
int i, j, n, is_rev;
if (b->n == 0) return 0;
if (bwt && bns) { // convert to chromosomal coordinates if requested
int old_n = b->n;
bsw2hit_t *old_hits = b->hits;
for (i = n = 0; i < b->n; ++i) { // compute the memory to allocated
bsw2hit_t *p = old_hits + i;
if (p->l - p->k + 1 <= IS) n += p->l - p->k + 1;
else if (p->G > 0) ++n;
}
b->n = b->max = n;
b->hits = xcalloc(b->max, sizeof(bsw2hit_t));
for (i = j = 0; i < old_n; ++i) {
bsw2hit_t *p = old_hits + i;
if (p->l - p->k + 1 <= IS) { // the hit is no so repetitive
bwtint_t k;
if (p->G == 0 && p->k == 0 && p->l == 0 && p->len == 0) continue;
for (k = p->k; k <= p->l; ++k) {
b->hits[j] = *p;
b->hits[j].k = bns_depos(bns, bwt_sa(bwt, k), &is_rev);
b->hits[j].l = 0;
b->hits[j].is_rev = is_rev;
if (is_rev) b->hits[j].k -= p->len - 1;
++j;
}
} else if (p->G > 0) {
b->hits[j] = *p;
b->hits[j].k = bns_depos(bns, bwt_sa(bwt, p->k), &is_rev);
b->hits[j].l = 0;
b->hits[j].flag |= 1;
b->hits[j].is_rev = is_rev;
if (is_rev) b->hits[j].k -= p->len - 1;
++j;
}
}
free(old_hits);
}
for (i = j = 0; i < b->n; ++i) // squeeze out empty elements
if (b->hits[i].G) b->hits[j++] = b->hits[i];
b->n = j;
ks_introsort(hitG, b->n, b->hits);
for (i = 1; i < b->n; ++i) {
bsw2hit_t *p = b->hits + i;
for (j = 0; j < i; ++j) {
bsw2hit_t *q = b->hits + j;
int compatible = 1;
if (p->is_rev != q->is_rev) continue; // hits from opposite strands are not duplicates
if (p->l == 0 && q->l == 0) {
int qol = (p->end < q->end? p->end : q->end) - (p->beg > q->beg? p->beg : q->beg); // length of query overlap
if (qol < 0) qol = 0;
if ((float)qol / (p->end - p->beg) > MASK_LEVEL || (float)qol / (q->end - q->beg) > MASK_LEVEL) {
int64_t tol = (int64_t)(p->k + p->len < q->k + q->len? p->k + p->len : q->k + q->len)
- (int64_t)(p->k > q->k? p->k : q->k); // length of target overlap
if ((double)tol / p->len > MASK_LEVEL || (double)tol / q->len > MASK_LEVEL)
compatible = 0;
}
}
if (!compatible) {
p->G = 0;
if (q->G2 < p->G2) q->G2 = p->G2;
break;
}
}
}
n = i;
for (i = j = 0; i < n; ++i) {
if (b->hits[i].G == 0) continue;
if (i != j) b->hits[j++] = b->hits[i];
else ++j;
}
b->n = j;
return b->n;
}
int bsw2_resolve_query_overlaps(bwtsw2_t *b, float mask_level)
{
int i, j, n;
if (b->n == 0) return 0;
ks_introsort(hitG, b->n, b->hits);
{ // choose a random one
int G0 = b->hits[0].G;
for (i = 1; i < b->n; ++i)
if (b->hits[i].G != G0) break;
j = (int)(i * drand48());
if (j) {
bsw2hit_t tmp;
tmp = b->hits[0]; b->hits[0] = b->hits[j]; b->hits[j] = tmp;
}
}
for (i = 1; i < b->n; ++i) {
bsw2hit_t *p = b->hits + i;
int all_compatible = 1;
if (p->G == 0) break;
for (j = 0; j < i; ++j) {
bsw2hit_t *q = b->hits + j;
int64_t tol = 0;
int qol, compatible = 0;
float fol;
if (q->G == 0) continue;
qol = (p->end < q->end? p->end : q->end) - (p->beg > q->beg? p->beg : q->beg);
if (qol < 0) qol = 0;
if (p->l == 0 && q->l == 0) {
tol = (int64_t)(p->k + p->len < q->k + q->len? p->k + p->len : q->k + q->len)
- (p->k > q->k? p->k : q->k);
if (tol < 0) tol = 0;
}
fol = (float)qol / (p->end - p->beg < q->end - q->beg? p->end - p->beg : q->end - q->beg);
if (fol < mask_level || (tol > 0 && qol < p->end - p->beg && qol < q->end - q->beg)) compatible = 1;
if (!compatible) {
if (q->G2 < p->G) q->G2 = p->G;
all_compatible = 0;
}
}
if (!all_compatible) p->G = 0;
}
n = i;
for (i = j = 0; i < n; ++i) {
if (b->hits[i].G == 0) continue;
if (i != j) b->hits[j++] = b->hits[i];
else ++j;
}
b->n = j;
return j;
}
/* --- END: processing partial hits --- */
/* --- BEGIN: global mem pool --- */
bsw2global_t *bsw2_global_init()
{
bsw2global_t *pool;
bsw2stack_t *stack;
pool = xcalloc(1, sizeof(bsw2global_t));
stack = xcalloc(1, sizeof(bsw2stack_t));
stack->pool = (mempool_t*)xcalloc(1, sizeof(mempool_t));
pool->stack = (void*)stack;
return pool;
}
void bsw2_global_destroy(bsw2global_t *pool)
{
stack_destroy((bsw2stack_t*)pool->stack);
free(pool->aln_mem);
free(pool);
}
/* --- END: global mem pool --- */
static inline int fill_cell(const bsw2opt_t *o, int match_score, bsw2cell_t *c[4])
{
int G = c[3]? c[3]->G + match_score : MINUS_INF;
if (c[1]) {
c[0]->I = c[1]->I > c[1]->G - o->q? c[1]->I - o->r : c[1]->G - o->qr;
if (c[0]->I > G) G = c[0]->I;
} else c[0]->I = MINUS_INF;
if (c[2]) {
c[0]->D = c[2]->D > c[2]->G - o->q? c[2]->D - o->r : c[2]->G - o->qr;
if (c[0]->D > G) G = c[0]->D;
} else c[0]->D = MINUS_INF;
return(c[0]->G = G);
}
static void init_bwtsw2(const bwtl_t *target, const bwt_t *query, bsw2stack_t *s)
{
bsw2entry_t *u;
bsw2cell_t *x;
u = mp_alloc(s->pool);
u->tk = 0; u->tl = target->seq_len;
x = push_array_p(u);
*x = g_default_cell;
x->G = 0; x->qk = 0; x->ql = query->seq_len;
u->n++;
stack_push0(s, u);
}
/* On return, ret[1] keeps not-so-repetitive hits (narrow SA hits); ret[0] keeps all hits (right?) */
bwtsw2_t **bsw2_core(const bntseq_t *bns, const bsw2opt_t *opt, const bwtl_t *target, const bwt_t *query, bsw2global_t *pool)
{
bsw2stack_t *stack = (bsw2stack_t*)pool->stack;
bwtsw2_t *b, *b1, **b_ret;
int i, j, score_mat[16], *heap, heap_size, n_tot = 0;
struct rusage curr, last;
khash_t(qintv) *rhash;
khash_t(64) *chash;
// initialize connectivity hash (chash)
chash = bsw2_connectivity(target);
// calculate score matrix
for (i = 0; i != 4; ++i)
for (j = 0; j != 4; ++j)
score_mat[i<<2|j] = (i == j)? opt->a : -opt->b;
// initialize other variables
rhash = kh_init(qintv);
init_bwtsw2(target, query, stack);
heap_size = opt->z;
heap = xcalloc(heap_size, sizeof(int));
// initialize the return struct
b = (bwtsw2_t*)xcalloc(1, sizeof(bwtsw2_t));
b->n = b->max = target->seq_len * 2;
b->hits = xcalloc(b->max, sizeof(bsw2hit_t));
b1 = (bwtsw2_t*)xcalloc(1, sizeof(bwtsw2_t));
b_ret = xcalloc(2, sizeof(void*));
b_ret[0] = b; b_ret[1] = b1;
// initialize timer
getrusage(0, &last);
// the main loop: traversal of the DAG
while (!stack_isempty(stack)) {
int old_n, tj;
bsw2entry_t *v;
uint32_t tcntk[4], tcntl[4];
bwtint_t k, l;
v = stack_pop(stack); old_n = v->n;
n_tot += v->n;
for (i = 0; i < v->n; ++i) { // test max depth and band width
bsw2cell_t *p = v->array + i;
if (p->ql == 0) continue;
if (p->tlen - (int)p->qlen > opt->bw || (int)p->qlen - p->tlen > opt->bw) {
p->qk = p->ql = 0;
if (p->ppos >= 0) v->array[p->ppos].cpos[p->pj] = -5;
}
}
// get Occ for the DAG
bwtl_2occ4(target, v->tk - 1, v->tl, tcntk, tcntl);
for (tj = 0; tj != 4; ++tj) { // descend to the children
bwtint_t qcntk[4], qcntl[4];
int qj, *curr_score_mat = score_mat + tj * 4;
khiter_t iter;
bsw2entry_t *u;
k = target->L2[tj] + tcntk[tj] + 1;
l = target->L2[tj] + tcntl[tj];
if (k > l) continue;
// update counter
iter = kh_get(64, chash, (uint64_t)k<<32 | l);
--kh_value(chash, iter);
// initialization
u = mp_alloc(stack->pool);
u->tk = k; u->tl = l;
memset(heap, 0, sizeof(int) * opt->z);
// loop through all the nodes in v
for (i = 0; i < v->n; ++i) {
bsw2cell_t *p = v->array + i, *x, *c[4]; // c[0]=>current, c[1]=>I, c[2]=>D, c[3]=>G
int is_added = 0;
if (p->ql == 0) continue; // deleted node
c[0] = x = push_array_p(u);
x->G = MINUS_INF;
p->upos = x->upos = -1;
if (p->ppos >= 0) { // parent has been visited
c[1] = (v->array[p->ppos].upos >= 0)? u->array + v->array[p->ppos].upos : 0;
c[3] = v->array + p->ppos; c[2] = p;
if (fill_cell(opt, curr_score_mat[p->pj], c) > 0) { // then update topology at p and x
x->ppos = v->array[p->ppos].upos; // the parent pos in u
p->upos = u->n++; // the current pos in u
if (x->ppos >= 0) u->array[x->ppos].cpos[p->pj] = p->upos; // the child pos of its parent in u
is_added = 1;
}
} else {
x->D = p->D > p->G - opt->q? p->D - opt->r : p->G - opt->qr;
if (x->D > 0) {
x->G = x->D;
x->I = MINUS_INF; x->ppos = -1;
p->upos = u->n++;
is_added = 1;
}
}
if (is_added) { // x has been added to u->array. fill the remaining variables
x->cpos[0] = x->cpos[1] = x->cpos[2] = x->cpos[3] = -1;
x->pj = p->pj; x->qk = p->qk; x->ql = p->ql; x->qlen = p->qlen; x->tlen = p->tlen + 1;
if (x->G > -heap[0]) {
heap[0] = -x->G;
ks_heapadjust(int, 0, heap_size, heap);
}
}
if ((x->G > opt->qr && x->G >= -heap[0]) || i < old_n) { // good node in u, or in v
if (p->cpos[0] == -1 || p->cpos[1] == -1 || p->cpos[2] == -1 || p->cpos[3] == -1) {
bwt_2occ4(query, p->qk - 1, p->ql, qcntk, qcntl);
for (qj = 0; qj != 4; ++qj) { // descend to the prefix trie
if (p->cpos[qj] != -1) continue; // this node will be visited later
k = query->L2[qj] + qcntk[qj] + 1;
l = query->L2[qj] + qcntl[qj];
if (k > l) { p->cpos[qj] = -2; continue; }
x = push_array_p(v);
p = v->array + i; // p may not point to the correct position after realloc
x->G = x->I = x->D = MINUS_INF;
x->qk = k; x->ql = l; x->pj = qj; x->qlen = p->qlen + 1; x->ppos = i; x->tlen = p->tlen;
x->cpos[0] = x->cpos[1] = x->cpos[2] = x->cpos[3] = -1;
p->cpos[qj] = v->n++;
} // ~for(qj)
} // ~if(p->cpos[])
} // ~if
} // ~for(i)
if (u->n) save_hits(target, opt->t, b->hits, u);
{ // push u to the stack (or to the pending array)
uint32_t cnt, pos;
cnt = (uint32_t)kh_value(chash, iter);
pos = kh_value(chash, iter)>>32;
if (pos) { // something in the pending array, then merge
bsw2entry_t *w = kv_A(stack->pending, pos-1);
if (u->n) {
if (w->n < u->n) { // swap
w = u; u = kv_A(stack->pending, pos-1); kv_A(stack->pending, pos-1) = w;
}
merge_entry(opt, w, u, b);
}
if (cnt == 0) { // move from pending to stack0
remove_duplicate(w, rhash);
save_narrow_hits(target, w, b1, opt->t, opt->is);
cut_tail(w, opt->z, u);
stack_push0(stack, w);
kv_A(stack->pending, pos-1) = 0;
--stack->n_pending;
}
mp_free(stack->pool, u);
} else if (cnt) { // the first time
if (u->n) { // push to the pending queue
++stack->n_pending;
kv_push(bsw2entry_p, stack->pending, u);
kh_value(chash, iter) = (uint64_t)kv_size(stack->pending)<<32 | cnt;
} else mp_free(stack->pool, u);
} else { // cnt == 0, then push to the stack
bsw2entry_t *w = mp_alloc(stack->pool);
save_narrow_hits(target, u, b1, opt->t, opt->is);
cut_tail(u, opt->z, w);
mp_free(stack->pool, w);
stack_push0(stack, u);
}
}
} // ~for(tj)
mp_free(stack->pool, v);
} // while(top)
getrusage(0, &curr);
for (i = 0; i < 2; ++i)
for (j = 0; j < b_ret[i]->n; ++j)
b_ret[i]->hits[j].n_seeds = 0;
bsw2_resolve_duphits(bns, query, b, opt->is);
bsw2_resolve_duphits(bns, query, b1, opt->is);
//fprintf(stderr, "stats: %.3lf sec; %d elems\n", time_elapse(&curr, &last), n_tot);
// free
free(heap);
kh_destroy(qintv, rhash);
kh_destroy(64, chash);
stack->pending.n = stack->stack0.n = 0;
return b_ret;
}