Skip to content

Latest commit

 

History

History
 
 

layoutxlm

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

LayoutXLM (Document Foundation Model)

Multimodal (text + layout/format + image) pre-training for multilingual Document AI

Introduction

LayoutXLM is a multimodal pre-trained model for multilingual document understanding, which aims to bridge the language barriers for visually-rich document understanding. Experiment results show that it has significantly outperformed the existing SOTA cross-lingual pre-trained models on the XFUND dataset.

LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei, arXiv Preprint 2021

Models

layoutxlm-base | huggingface

Fine-tuning Example on XFUND

Installation

Please refer to layoutlmft

Fine-tuning for Semantic Entity Recognition

cd layoutlmft
python -m torch.distributed.launch --nproc_per_node=4 examples/run_xfun_ser.py \
        --model_name_or_path microsoft/layoutxlm-base \
        --output_dir /tmp/test-ner \
        --do_train \
        --do_eval \
        --lang zh \
        --max_steps 1000 \
        --warmup_ratio 0.1 \
        --fp16

Fine-tuning for Relation Extraction

cd layoutlmft
python -m torch.distributed.launch --nproc_per_node=4 examples/run_xfun_re.py \
        --model_name_or_path microsoft/layoutxlm-base \
        --output_dir /tmp/test-ner \
        --do_train \
        --do_eval \
        --lang zh \
        --max_steps 2500 \
        --per_device_train_batch_size 2 \
        --warmup_ratio 0.1 \
        --fp16

Results on XFUND

Language-specific Finetuning

Model FUNSD ZH JA ES FR IT DE PT Avg.
Semantic Entity Recognition xlm-roberta-base 0.667 0.8774 0.7761 0.6105 0.6743 0.6687 0.6814 0.6818 0.7047
infoxlm-base 0.6852 0.8868 0.7865 0.6230 0.7015 0.6751 0.7063 0.7008 0.7207
layoutxlm-base 0.794 0.8924 0.7921 0.7550 0.7902 0.8082 0.8222 0.7903 0.8056
Relation Extraction xlm-roberta-base 0.2659 0.5105 0.5800 0.5295 0.4965 0.5305 0.5041 0.3982 0.4769
infoxlm-base 0.2920 0.5214 0.6000 0.5516 0.4913 0.5281 0.5262 0.4170 0.4910
layoutxlm-base 0.5483 0.7073 0.6963 0.6896 0.6353 0.6415 0.6551 0.5718 0.6432

Zero-shot Transfer Learning

Model FUNSD ZH JA ES FR IT DE PT Avg.
SER xlm-roberta-base 0.667 0.4144 0.3023 0.3055 0.371 0.2767 0.3286 0.3936 0.3824
infoxlm-base 0.6852 0.4408 0.3603 0.3102 0.4021 0.2880 0.3587 0.4502 0.4119
layoutxlm-base 0.794 0.6019 0.4715 0.4565 0.5757 0.4846 0.5252 0.539 0.5561
RE xlm-roberta-base 0.2659 0.1601 0.2611 0.2440 0.2240 0.2374 0.2288 0.1996 0.2276
infoxlm-base 0.2920 0.2405 0.2851 0.2481 0.2454 0.2193 0.2027 0.2049 0.2423
layoutxlm-base 0.5483 0.4494 0.4408 0.4708 0.4416 0.4090 0.3820 0.3685 0.4388

Multitask Fine-tuning

Model FUNSD ZH JA ES FR IT DE PT Avg.
SER xlm-roberta-base 0.6633 0.883 0.7786 0.6223 0.7035 0.6814 0.7146 0.6726 0.7149
infoxlm-base 0.6538 0.8741 0.7855 0.5979 0.7057 0.6826 0.7055 0.6796 0.7106
layoutxlm-base 0.7924 0.8973 0.7964 0.7798 0.8173 0.821 0.8322 0.8241 0.8201
RE xlm-roberta-base 0.3638 0.6797 0.6829 0.6828 0.6727 0.6937 0.6887 0.6082 0.6341
infoxlm-base 0.3699 0.6493 0.6473 0.6828 0.6831 0.6690 0.6384 0.5763 0.6145
layoutxlm-base 0.6671 0.8241 0.8142 0.8104 0.8221 0.8310 0.7854 0.7044 0.7823

Citation

If you find LayoutXLM useful in your research, please cite the following paper:

@article{Xu2020LayoutXLMMP,
  title         = {LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding},
  author        = {Yiheng Xu and Tengchao Lv and Lei Cui and Guoxin Wang and Yijuan Lu and Dinei Florencio and Cha Zhang and Furu Wei},
  year          = {2021},
  eprint        = {2104.08836},
  archivePrefix = {arXiv},
  primaryClass  = {cs.CL}
}

License

The content of this project itself is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

Contact Information

For help or issues using LayoutXLM, please submit a GitHub issue.

For other communications related to LayoutXLM, please contact Lei Cui ([email protected]), Furu Wei ([email protected]).