-
Notifications
You must be signed in to change notification settings - Fork 0
/
cgelqf.f
269 lines (269 loc) · 7.38 KB
/
cgelqf.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
*> \brief \b CGELQF
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGELQF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelqf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelqf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelqf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGELQF computes an LQ factorization of a complex M-by-N matrix A:
*> A = L * Q.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, the elements on and below the diagonal of the array
*> contain the m-by-min(m,n) lower trapezoidal matrix L (L is
*> lower triangular if m <= n); the elements above the diagonal,
*> with the array TAU, represent the unitary matrix Q as a
*> product of elementary reflectors (see Further Details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors (see Further
*> Details).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,M).
*> For optimum performance LWORK >= M*NB, where NB is the
*> optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexGEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of elementary reflectors
*>
*> Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
*>
*> Each H(i) has the form
*>
*> H(i) = I - tau * v * v**H
*>
*> where tau is a complex scalar, and v is a complex vector with
*> v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
*> A(i,i+1:n), and tau in TAU(i).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
$ NBMIN, NX
* ..
* .. External Subroutines ..
EXTERNAL CGELQ2, CLARFB, CLARFT, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
NB = ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )
LWKOPT = M*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGELQF', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
K = MIN( M, N )
IF( K.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
NBMIN = 2
NX = 0
IWS = M
IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
* Determine when to cross over from blocked to unblocked code.
*
NX = MAX( 0, ILAENV( 3, 'CGELQF', ' ', M, N, -1, -1 ) )
IF( NX.LT.K ) THEN
*
* Determine if workspace is large enough for blocked code.
*
LDWORK = M
IWS = LDWORK*NB
IF( LWORK.LT.IWS ) THEN
*
* Not enough workspace to use optimal NB: reduce NB and
* determine the minimum value of NB.
*
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'CGELQF', ' ', M, N, -1,
$ -1 ) )
END IF
END IF
END IF
*
IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
* Use blocked code initially
*
DO 10 I = 1, K - NX, NB
IB = MIN( K-I+1, NB )
*
* Compute the LQ factorization of the current block
* A(i:i+ib-1,i:n)
*
CALL CGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
$ IINFO )
IF( I+IB.LE.M ) THEN
*
* Form the triangular factor of the block reflector
* H = H(i) H(i+1) . . . H(i+ib-1)
*
CALL CLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
$ LDA, TAU( I ), WORK, LDWORK )
*
* Apply H to A(i+ib:m,i:n) from the right
*
CALL CLARFB( 'Right', 'No transpose', 'Forward',
$ 'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
$ LDA, WORK, LDWORK, A( I+IB, I ), LDA,
$ WORK( IB+1 ), LDWORK )
END IF
10 CONTINUE
ELSE
I = 1
END IF
*
* Use unblocked code to factor the last or only block.
*
IF( I.LE.K )
$ CALL CGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
$ IINFO )
*
WORK( 1 ) = IWS
RETURN
*
* End of CGELQF
*
END