-
Notifications
You must be signed in to change notification settings - Fork 0
/
cgegv.f
603 lines (602 loc) · 19.6 KB
/
cgegv.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
SUBROUTINE CGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
$ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
*
* -- LAPACK driver routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER JOBVL, JOBVR
INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
$ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* This routine is deprecated and has been replaced by routine CGGEV.
*
* CGEGV computes the eigenvalues and, optionally, the left and/or right
* eigenvectors of a complex matrix pair (A,B).
* Given two square matrices A and B,
* the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
* eigenvalues lambda and corresponding (non-zero) eigenvectors x such
* that
* A*x = lambda*B*x.
*
* An alternate form is to find the eigenvalues mu and corresponding
* eigenvectors y such that
* mu*A*y = B*y.
*
* These two forms are equivalent with mu = 1/lambda and x = y if
* neither lambda nor mu is zero. In order to deal with the case that
* lambda or mu is zero or small, two values alpha and beta are returned
* for each eigenvalue, such that lambda = alpha/beta and
* mu = beta/alpha.
*
* The vectors x and y in the above equations are right eigenvectors of
* the matrix pair (A,B). Vectors u and v satisfying
* u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B
* are left eigenvectors of (A,B).
*
* Note: this routine performs "full balancing" on A and B -- see
* "Further Details", below.
*
* Arguments
* =========
*
* JOBVL (input) CHARACTER*1
* = 'N': do not compute the left generalized eigenvectors;
* = 'V': compute the left generalized eigenvectors (returned
* in VL).
*
* JOBVR (input) CHARACTER*1
* = 'N': do not compute the right generalized eigenvectors;
* = 'V': compute the right generalized eigenvectors (returned
* in VR).
*
* N (input) INTEGER
* The order of the matrices A, B, VL, and VR. N >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA, N)
* On entry, the matrix A.
* If JOBVL = 'V' or JOBVR = 'V', then on exit A
* contains the Schur form of A from the generalized Schur
* factorization of the pair (A,B) after balancing. If no
* eigenvectors were computed, then only the diagonal elements
* of the Schur form will be correct. See CGGHRD and CHGEQZ
* for details.
*
* LDA (input) INTEGER
* The leading dimension of A. LDA >= max(1,N).
*
* B (input/output) COMPLEX array, dimension (LDB, N)
* On entry, the matrix B.
* If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
* upper triangular matrix obtained from B in the generalized
* Schur factorization of the pair (A,B) after balancing.
* If no eigenvectors were computed, then only the diagonal
* elements of B will be correct. See CGGHRD and CHGEQZ for
* details.
*
* LDB (input) INTEGER
* The leading dimension of B. LDB >= max(1,N).
*
* ALPHA (output) COMPLEX array, dimension (N)
* The complex scalars alpha that define the eigenvalues of
* GNEP.
*
* BETA (output) COMPLEX array, dimension (N)
* The complex scalars beta that define the eigenvalues of GNEP.
*
* Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
* represent the j-th eigenvalue of the matrix pair (A,B), in
* one of the forms lambda = alpha/beta or mu = beta/alpha.
* Since either lambda or mu may overflow, they should not,
* in general, be computed.
*
* VL (output) COMPLEX array, dimension (LDVL,N)
* If JOBVL = 'V', the left eigenvectors u(j) are stored
* in the columns of VL, in the same order as their eigenvalues.
* Each eigenvector is scaled so that its largest component has
* abs(real part) + abs(imag. part) = 1, except for eigenvectors
* corresponding to an eigenvalue with alpha = beta = 0, which
* are set to zero.
* Not referenced if JOBVL = 'N'.
*
* LDVL (input) INTEGER
* The leading dimension of the matrix VL. LDVL >= 1, and
* if JOBVL = 'V', LDVL >= N.
*
* VR (output) COMPLEX array, dimension (LDVR,N)
* If JOBVR = 'V', the right eigenvectors x(j) are stored
* in the columns of VR, in the same order as their eigenvalues.
* Each eigenvector is scaled so that its largest component has
* abs(real part) + abs(imag. part) = 1, except for eigenvectors
* corresponding to an eigenvalue with alpha = beta = 0, which
* are set to zero.
* Not referenced if JOBVR = 'N'.
*
* LDVR (input) INTEGER
* The leading dimension of the matrix VR. LDVR >= 1, and
* if JOBVR = 'V', LDVR >= N.
*
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,2*N).
* For good performance, LWORK must generally be larger.
* To compute the optimal value of LWORK, call ILAENV to get
* blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute:
* NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR;
* The optimal LWORK is MAX( 2*N, N*(NB+1) ).
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* RWORK (workspace/output) REAL array, dimension (8*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value.
* =1,...,N:
* The QZ iteration failed. No eigenvectors have been
* calculated, but ALPHA(j) and BETA(j) should be
* correct for j=INFO+1,...,N.
* > N: errors that usually indicate LAPACK problems:
* =N+1: error return from CGGBAL
* =N+2: error return from CGEQRF
* =N+3: error return from CUNMQR
* =N+4: error return from CUNGQR
* =N+5: error return from CGGHRD
* =N+6: error return from CHGEQZ (other than failed
* iteration)
* =N+7: error return from CTGEVC
* =N+8: error return from CGGBAK (computing VL)
* =N+9: error return from CGGBAK (computing VR)
* =N+10: error return from CLASCL (various calls)
*
* Further Details
* ===============
*
* Balancing
* ---------
*
* This driver calls CGGBAL to both permute and scale rows and columns
* of A and B. The permutations PL and PR are chosen so that PL*A*PR
* and PL*B*R will be upper triangular except for the diagonal blocks
* A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
* possible. The diagonal scaling matrices DL and DR are chosen so
* that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
* one (except for the elements that start out zero.)
*
* After the eigenvalues and eigenvectors of the balanced matrices
* have been computed, CGGBAK transforms the eigenvectors back to what
* they would have been (in perfect arithmetic) if they had not been
* balanced.
*
* Contents of A and B on Exit
* -------- -- - --- - -- ----
*
* If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
* both), then on exit the arrays A and B will contain the complex Schur
* form[*] of the "balanced" versions of A and B. If no eigenvectors
* are computed, then only the diagonal blocks will be correct.
*
* [*] In other words, upper triangular form.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
$ CONE = ( 1.0E0, 0.0E0 ) )
* ..
* .. Local Scalars ..
LOGICAL ILIMIT, ILV, ILVL, ILVR, LQUERY
CHARACTER CHTEMP
INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
$ IN, IRIGHT, IROWS, IRWORK, ITAU, IWORK, JC, JR,
$ LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3
REAL ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
$ BNRM1, BNRM2, EPS, SAFMAX, SAFMIN, SALFAI,
$ SALFAR, SBETA, SCALE, TEMP
COMPLEX X
* ..
* .. Local Arrays ..
LOGICAL LDUMMA( 1 )
* ..
* .. External Subroutines ..
EXTERNAL CGEQRF, CGGBAK, CGGBAL, CGGHRD, CHGEQZ, CLACPY,
$ CLASCL, CLASET, CTGEVC, CUNGQR, CUNMQR, XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
REAL CLANGE, SLAMCH
EXTERNAL ILAENV, LSAME, CLANGE, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CMPLX, INT, MAX, REAL
* ..
* .. Statement Functions ..
REAL ABS1
* ..
* .. Statement Function definitions ..
ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
* ..
* .. Executable Statements ..
*
* Decode the input arguments
*
IF( LSAME( JOBVL, 'N' ) ) THEN
IJOBVL = 1
ILVL = .FALSE.
ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
IJOBVL = 2
ILVL = .TRUE.
ELSE
IJOBVL = -1
ILVL = .FALSE.
END IF
*
IF( LSAME( JOBVR, 'N' ) ) THEN
IJOBVR = 1
ILVR = .FALSE.
ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
IJOBVR = 2
ILVR = .TRUE.
ELSE
IJOBVR = -1
ILVR = .FALSE.
END IF
ILV = ILVL .OR. ILVR
*
* Test the input arguments
*
LWKMIN = MAX( 2*N, 1 )
LWKOPT = LWKMIN
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
INFO = 0
IF( IJOBVL.LE.0 ) THEN
INFO = -1
ELSE IF( IJOBVR.LE.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
INFO = -11
ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
INFO = -13
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -15
END IF
*
IF( INFO.EQ.0 ) THEN
NB1 = ILAENV( 1, 'CGEQRF', ' ', N, N, -1, -1 )
NB2 = ILAENV( 1, 'CUNMQR', ' ', N, N, N, -1 )
NB3 = ILAENV( 1, 'CUNGQR', ' ', N, N, N, -1 )
NB = MAX( NB1, NB2, NB3 )
LOPT = MAX( 2*N, N*(NB+1) )
WORK( 1 ) = LOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGEGV ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Get machine constants
*
EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
SAFMIN = SLAMCH( 'S' )
SAFMIN = SAFMIN + SAFMIN
SAFMAX = ONE / SAFMIN
*
* Scale A
*
ANRM = CLANGE( 'M', N, N, A, LDA, RWORK )
ANRM1 = ANRM
ANRM2 = ONE
IF( ANRM.LT.ONE ) THEN
IF( SAFMAX*ANRM.LT.ONE ) THEN
ANRM1 = SAFMIN
ANRM2 = SAFMAX*ANRM
END IF
END IF
*
IF( ANRM.GT.ZERO ) THEN
CALL CLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 10
RETURN
END IF
END IF
*
* Scale B
*
BNRM = CLANGE( 'M', N, N, B, LDB, RWORK )
BNRM1 = BNRM
BNRM2 = ONE
IF( BNRM.LT.ONE ) THEN
IF( SAFMAX*BNRM.LT.ONE ) THEN
BNRM1 = SAFMIN
BNRM2 = SAFMAX*BNRM
END IF
END IF
*
IF( BNRM.GT.ZERO ) THEN
CALL CLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 10
RETURN
END IF
END IF
*
* Permute the matrix to make it more nearly triangular
* Also "balance" the matrix.
*
ILEFT = 1
IRIGHT = N + 1
IRWORK = IRIGHT + N
CALL CGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
$ RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 1
GO TO 80
END IF
*
* Reduce B to triangular form, and initialize VL and/or VR
*
IROWS = IHI + 1 - ILO
IF( ILV ) THEN
ICOLS = N + 1 - ILO
ELSE
ICOLS = IROWS
END IF
ITAU = 1
IWORK = ITAU + IROWS
CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
$ WORK( IWORK ), LWORK+1-IWORK, IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 2
GO TO 80
END IF
*
CALL CUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
$ LWORK+1-IWORK, IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 3
GO TO 80
END IF
*
IF( ILVL ) THEN
CALL CLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
CALL CLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
$ VL( ILO+1, ILO ), LDVL )
CALL CUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
$ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
$ IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 4
GO TO 80
END IF
END IF
*
IF( ILVR )
$ CALL CLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
*
* Reduce to generalized Hessenberg form
*
IF( ILV ) THEN
*
* Eigenvectors requested -- work on whole matrix.
*
CALL CGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
$ LDVL, VR, LDVR, IINFO )
ELSE
CALL CGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
$ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
END IF
IF( IINFO.NE.0 ) THEN
INFO = N + 5
GO TO 80
END IF
*
* Perform QZ algorithm
*
IWORK = ITAU
IF( ILV ) THEN
CHTEMP = 'S'
ELSE
CHTEMP = 'E'
END IF
CALL CHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
$ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWORK ),
$ LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
IF( IINFO.GE.0 )
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
INFO = IINFO
ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
INFO = IINFO - N
ELSE
INFO = N + 6
END IF
GO TO 80
END IF
*
IF( ILV ) THEN
*
* Compute Eigenvectors
*
IF( ILVL ) THEN
IF( ILVR ) THEN
CHTEMP = 'B'
ELSE
CHTEMP = 'L'
END IF
ELSE
CHTEMP = 'R'
END IF
*
CALL CTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
$ VR, LDVR, N, IN, WORK( IWORK ), RWORK( IRWORK ),
$ IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 7
GO TO 80
END IF
*
* Undo balancing on VL and VR, rescale
*
IF( ILVL ) THEN
CALL CGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
$ RWORK( IRIGHT ), N, VL, LDVL, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 8
GO TO 80
END IF
DO 30 JC = 1, N
TEMP = ZERO
DO 10 JR = 1, N
TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
10 CONTINUE
IF( TEMP.LT.SAFMIN )
$ GO TO 30
TEMP = ONE / TEMP
DO 20 JR = 1, N
VL( JR, JC ) = VL( JR, JC )*TEMP
20 CONTINUE
30 CONTINUE
END IF
IF( ILVR ) THEN
CALL CGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
$ RWORK( IRIGHT ), N, VR, LDVR, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 9
GO TO 80
END IF
DO 60 JC = 1, N
TEMP = ZERO
DO 40 JR = 1, N
TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
40 CONTINUE
IF( TEMP.LT.SAFMIN )
$ GO TO 60
TEMP = ONE / TEMP
DO 50 JR = 1, N
VR( JR, JC ) = VR( JR, JC )*TEMP
50 CONTINUE
60 CONTINUE
END IF
*
* End of eigenvector calculation
*
END IF
*
* Undo scaling in alpha, beta
*
* Note: this does not give the alpha and beta for the unscaled
* problem.
*
* Un-scaling is limited to avoid underflow in alpha and beta
* if they are significant.
*
DO 70 JC = 1, N
ABSAR = ABS( REAL( ALPHA( JC ) ) )
ABSAI = ABS( AIMAG( ALPHA( JC ) ) )
ABSB = ABS( REAL( BETA( JC ) ) )
SALFAR = ANRM*REAL( ALPHA( JC ) )
SALFAI = ANRM*AIMAG( ALPHA( JC ) )
SBETA = BNRM*REAL( BETA( JC ) )
ILIMIT = .FALSE.
SCALE = ONE
*
* Check for significant underflow in imaginary part of ALPHA
*
IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
$ MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
ILIMIT = .TRUE.
SCALE = ( SAFMIN / ANRM1 ) / MAX( SAFMIN, ANRM2*ABSAI )
END IF
*
* Check for significant underflow in real part of ALPHA
*
IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
$ MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
ILIMIT = .TRUE.
SCALE = MAX( SCALE, ( SAFMIN / ANRM1 ) /
$ MAX( SAFMIN, ANRM2*ABSAR ) )
END IF
*
* Check for significant underflow in BETA
*
IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
$ MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
ILIMIT = .TRUE.
SCALE = MAX( SCALE, ( SAFMIN / BNRM1 ) /
$ MAX( SAFMIN, BNRM2*ABSB ) )
END IF
*
* Check for possible overflow when limiting scaling
*
IF( ILIMIT ) THEN
TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
$ ABS( SBETA ) )
IF( TEMP.GT.ONE )
$ SCALE = SCALE / TEMP
IF( SCALE.LT.ONE )
$ ILIMIT = .FALSE.
END IF
*
* Recompute un-scaled ALPHA, BETA if necessary.
*
IF( ILIMIT ) THEN
SALFAR = ( SCALE*REAL( ALPHA( JC ) ) )*ANRM
SALFAI = ( SCALE*AIMAG( ALPHA( JC ) ) )*ANRM
SBETA = ( SCALE*BETA( JC ) )*BNRM
END IF
ALPHA( JC ) = CMPLX( SALFAR, SALFAI )
BETA( JC ) = SBETA
70 CONTINUE
*
80 CONTINUE
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of CGEGV
*
END