-
Notifications
You must be signed in to change notification settings - Fork 8
/
datasets.py
166 lines (142 loc) · 6.32 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import os
import json
from torchvision import datasets, transforms
from torchvision.datasets.folder import ImageFolder, default_loader
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
from mcloader import ClassificationDataset, FashionGenDatasetPreTrain, FashionGenDatasetDownstream_Retrieval, FashionGenDatasetDownstream_Recognition
class INatDataset(ImageFolder):
def __init__(self, root, train=True, year=2018, transform=None, target_transform=None,
category='name', loader=default_loader):
self.transform = transform
self.loader = loader
self.target_transform = target_transform
self.year = year
# assert category in ['kingdom','phylum','class','order','supercategory','family','genus','name']
path_json = os.path.join(root, f'{"train" if train else "val"}{year}.json')
with open(path_json) as json_file:
data = json.load(json_file)
with open(os.path.join(root, 'categories.json')) as json_file:
data_catg = json.load(json_file)
path_json_for_targeter = os.path.join(root, f"train{year}.json")
with open(path_json_for_targeter) as json_file:
data_for_targeter = json.load(json_file)
targeter = {}
indexer = 0
for elem in data_for_targeter['annotations']:
king = []
king.append(data_catg[int(elem['category_id'])][category])
if king[0] not in targeter.keys():
targeter[king[0]] = indexer
indexer += 1
self.nb_classes = len(targeter)
self.samples = []
for elem in data['images']:
cut = elem['file_name'].split('/')
target_current = int(cut[2])
path_current = os.path.join(root, cut[0], cut[2], cut[3])
categors = data_catg[target_current]
target_current_true = targeter[categors[category]]
self.samples.append((path_current, target_current_true))
# __getitem__ and __len__ inherited from ImageFolder
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform)
nb_classes = 100
return dataset, nb_classes
elif args.data_set == 'IMNET':
if not args.use_mcloader:
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
else:
dataset = ClassificationDataset(
'train' if is_train else 'val',
pipeline=transform
)
nb_classes = 1000
return dataset, nb_classes
elif args.data_set == "IMNET-TINY100":
if not args.use_mcloader:
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
else:
dataset = ClassificationDataset(
'train' if is_train else 'val',
pipeline=transform
)
nb_classes = 100
return dataset, nb_classes
elif args.data_set == 'INAT':
dataset = INatDataset(args.data_path, train=is_train, year=2018,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
return dataset, nb_classes
elif args.data_set == 'INAT19':
dataset = INatDataset(args.data_path, train=is_train, year=2019,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
return dataset, nb_classes
elif args.data_set == 'FashionGen':
if args.eval_retrieval_tir or args.eval_retrieval_itr:
print('>>> load FashionGenDatasetDownstream_Retrieval at `./datasets.py`')
dataset = FashionGenDatasetDownstream_Retrieval(
root=args.data_path,
args=args
)
elif args.eval_recognition:
print('>>> load FashionGenDatasetDownstream_Recognition at `./datasets.py`')
dataset = FashionGenDatasetDownstream_Recognition(
root=args.data_path,
args=args
)
else:
print('>>> load FashionGenDatasetPreTrain at `./datasets.py`')
dataset = FashionGenDatasetPreTrain(
root=args.data_path,
# trainsize=args.input_size,
data_type='train' if is_train else 'valid',
# max_token_length=args.num_text_tokens,
# word_mask_rate=args.word_mask_rate,
is_train=True if is_train else False,
# if_itm=True if args.loss_type['itm'] == 1 else False,
# if_itg=True if args.loss_type['itg'] == 1 else False,
# mask_ratio=args.mask_ratio,
# mask_strategy=args.mask_strategy,
args=args
)
return dataset
else:
raise ValueError('Unknown dataset: {}'.format(args.data_set))
def build_transform(is_train, args):
resize_im = args.input_size > 32
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
size = int((256 / 224) * args.input_size)
t.append(
transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)