MGNNI: Multiscale Graph Neural Networks with Implicit Layers (NGNNI)
Dataset
# Nodes
# Edges
# Classes
Cornell
183
280
5
Texas
183
295
5
Wisconsin
251
466
5
Refer to WebKB .
# available dataset: "cora", "citeseer", "pubmed"
TL_BACKEND=" paddle" python mgnni_trainner.py --dataset cornell --lr 0.5 --l2_coef 5e-6 --model MGNNI_m_att --ks [1,2] --epochs 300
TL_BACKEND=" paddle" python mgnni_trainner.py --dataset texas --lr 0.5 --l2_coef 5e-6 --model MGNNI_m_att --ks [1,2] --epochs 300
TL_BACKEND=" paddle" python mgnni_trainner.py --dataset wisconsin --lr 0.5 --l2_coef 5e-6 --model MGNNI_m_att --ks [1,2] --epochs 300
TL_BACKEND=" tensorflow" python mgnni_trainner.py --dataset cornell --lr 0.5 --l2_coef 5e-6 --model MGNNI_m_att --ks [1,2] --epochs 300
TL_BACKEND=" tensorflow" python mgnni_trainner.py --dataset texas --lr 0.5 --l2_coef 5e-6 --model MGNNI_m_att --ks [1,2] --epochs 300
TL_BACKEND=" tensorflow" python mgnni_trainner.py --dataset wisconsin --lr 0.5 --l2_coef 5e-6 --model MGNNI_m_att --ks [1,2] --epochs 300
TL_BACKEND=" torch" python mgnni_trainner.py --dataset cornell --lr 0.5 --l2_coef 5e-6 --model MGNNI_m_att --ks [1,2] --epochs 300
TL_BACKEND=" torch" python mgnni_trainner.py --dataset texas --lr 0.5 --l2_coef 5e-6 --model MGNNI_m_att --ks [1,2] --epochs 300
TL_BACKEND=" torch" python mgnni_trainner.py --dataset wisconsin --lr 0.5 --l2_coef 5e-6 --model MGNNI_m_att --ks [1,2] --epochs 300
Dataset
Paper
Our(pd)
Our(tf)
Our(th)
Our(ms)
Cornell
78.38
78.92±1.21
78.38±0.00
78.38±0.00
Texas
81.08
85.95±1.21
83.78±0.00
84.86±1.48
Wisconsin
82.35
83.53±1.07
82.35±0.00
83.92±0.88