Skip to content

Latest commit

 

History

History
 
 

han

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Heterogeneous Graph Attention Network (HAN)

This is an implementation of HAN for heterogeneous graphs.

Usage

python han_trainer.py for reproducing HAN's work on IMDB.

Note: this scripts only support IMDB, which means command python han_trainer.py --dataset ACM will not run on ACM. If you want to test the performance of other datasets, you are suggested to make some modification of the trainer script.

Performance

Reference performance numbers for the IMDB dataset: (0.01, 200, 0.0001, 8, 0.8, 0.58178, 0.002811689883326394)

train test val = 400, 3478, 400, about 9% for trianing

Dataset Paper(80% training) Paper(60% training) Paper(40% training) Paper(20% training) Our(tf) Our(th) Our(pd)
IMDB 58.51 58.32 57.97 55.73 57.78(±0.51) 55.66(±1.05) 56.58(±0.51)
TL_BACKEND="tensorflow" python3 han_trainer.py --n_epoch 200 --lr 0.01 --l2_coef 0.0001 --heads 8 --drop_rate 0.8

TL_BACKEND="torch" python3 han_trainer.py --n_epoch 200 --lr 0.01 --l2_coef 0.0001 --heads 16 --drop_rate 0.4

TL_BACKEND="paddle" python3 han_trainer.py --n_epoch 200 --lr 0.01 --l2_coef 0.0001 --heads 16 --drop_rate 0.4