- Paper link: https://arxiv.org/pdf/1711.08267.pdf
- Author's code repo: https://github.com/hwwang55/GraphGAN. Note that the original code is implemented with Tensorflow for the paper.
Dataset | # Nodes | # Edges |
---|---|---|
arXiv-GrQc | 5242 | 14496 |
-
gan_datasets : folds to save training data
- CA-GrQc_train : training data
- CA-GrQc_test : positive sampling of test data
- CA-GrQc_test_neg : negative sampling of test data
The data should be an undirected graph in which node IDs start from 0 to N-1 (N is the number of nodes in the graph). Each line contains two node IDs indicating an edge in the graph.
txt file sample :
0 1
3 2
...
- CA-GrQc_pre_train.emb : pre-trained node embeddings
Note: the dimension of pre-trained node embeddings should equal parameter 'n_emb'
-
gan_cache
- CA-GrQc.pkl : save constructed BFS-trees
-
gan_results
- CA-GrQc.txt : evaluation results
- CA-GrQc_best_acc_gen_.emb : embeddings of generator with the best evaluation
- CA-GrQc_best_acc_dis_.emb : embeddings of discriminator with the best evaluation
- CA-GrQc_gen_.emb : learned embeddings of generator during training
- CA-GrQc_dis_.emb : learned embeddings of discriminator during training
-
checkpoint : folds to save the model weights
TL_BACKEND="paddle" python graphgan_trainer.py --batch_size_dis 1024 --batch_size_gen 1024 --n_epochs 30 --lr_gen 1e-5 --lr_dis 1e-5
TL_BACKEND="tensorflow" python graphgan_trainer.py --batch_size_dis 1024 --batch_size_gen 1024 --n_epochs 30 --lr_gen 1e-5 --lr_dis 1e-5
TL_BACKEND="torch" python graphgan_trainer.py --batch_size_dis 1024 --batch_size_gen 1024 --n_epochs 30 --lr_gen 1e-5 --lr_dis 1e-5
Dataset | Paper | Our(pd) | Our(tf) | Our(torch) |
---|---|---|---|---|
arXiv-GrQc | 0.849 | 0.8813±0.00069 | 0.8819±0.00133 | 0.8820 |