Scaled YOLOv4 训练自己的数据集
感谢 https://github.com/WongKinYiu/ScaledYOLOv4 大佬的开源!!!
DataXujing
我们以训练YOLOv4-P7为例,介绍如何基于Scaled YOLOv4训练自己的数据集
python3.7 cuda 10.2
pytorch==1.6.0
torchvision==0.7.0
# mish-cuda
# 使用预训练的模型
git clone https://github.com/thomasbrandon/mish-cuda mc
cd mc
# change all of name which is mish_cuda to mish_mish and build.
# 1. mc/src/mish_cuda -> mc/src/mish_mish
# 2. mc/csrc/mish_cuda.cpp -> mc/csrc/mish_mish.cpp
# 3. in mc/setup.py
# 3.1 line 5 -> 'csrc/mish_mish.cpp'
# 3.2 line 11 -> name='mish_mish'
# 3.3 line 20 -> 'mish_mish._C'
python setup.py build
# rename mc/build/lib.xxx folder to mc/build/lib
# modify import in models/common.py
# line 7 -> from mc.build.lib.mish_mish import MishCuda as Mish
# 不使用预训练的模型,可以
git clone https://github.com/thomasbrandon/mish-cuda
cd mish-cuda
python setup.py build install
遗憾的是我再CUDA9.0下成功的安装了mish-cuda,但是在CUDA9.2,CUDA10.0和CUDA10.2下均未成功安装mish-cuda,最后我在common.py中基于pytorch实现了Mish,实现方式如下:
no pretrain
# from mish_cuda import MishCuda as Mish
# pretrain
#from mc.build.lib.mish_mish import MishCuda as Mish
#------------------by xujing------------
# 实在装不上mish-cuda,用pytorch自己实现
class Mish(nn.Module):
def __init__(self):
super().__init__()
# print("Mish activation loaded...")
def forward(self,x):
x = x * (torch.tanh(F.softplus(x)))
return x
# ---------------------------------------------
数据集的准备请参考:https://github.com/DataXujing/YOLO-v5,其结构如下图所示:
eus # 数据集名称
├─images
│ ├─train # 训练图片存放地址
│ └─val # 验证图片存放地址
└─labels
├─train # train txt标注文件存放地址
└─val # val txt标注文件存放地址
- 修改增加
./data/eus.yaml
# train and val datasets (image directory or *.txt file with image paths)
train: ./eus/images/train # <-----------训练集存放地址
val: ./eus/images/val # <----------开发集存放地址
test: ./eus/images/val # <--------测试集存放地址
# number of classes
nc: 7 # <----------类别数量
# class names
names: ["Liomyoma", "Lipoma", "Pancreatic Rest", "GIST", "Cyst", "NET", "Cancer"] # <----列别列表
- 修改增加
./models/eus/yolov4-p7.yaml
# parameters
nc: 7 # <----------------------------------number of classes
depth_multiple: 1.0 # expand model depth
width_multiple: 1.25 # expand layer channels
# anchors
anchors:
- [13,17, 22,25, 27,66, 55,41] # P3/8
- [57,88, 112,69, 69,177, 136,138] # P4/16
- [136,138, 287,114, 134,275, 268,248] # P5/32
- [268,248, 232,504, 445,416, 640,640] # P6/64
- [812,393, 477,808, 1070,908, 1408,1408] # P7/128
# csp-p7 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, BottleneckCSP, [64]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
[-1, 15, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
[-1, 15, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
[-1, 7, BottleneckCSP, [1024]],
[-1, 1, Conv, [1024, 3, 2]], # 11-P6/64
[-1, 7, BottleneckCSP, [1024]],
[-1, 1, Conv, [1024, 3, 2]], # 13-P7/128
[-1, 7, BottleneckCSP, [1024]], # 14
]
# yolov4-p7 head
# na = len(anchors[0])
head:
[[-1, 1, SPPCSP, [512]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[-6, 1, Conv, [512, 1, 1]], # route backbone P6
[[-1, -2], 1, Concat, [1]],
[-1, 3, BottleneckCSP2, [512]], # 20
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[-13, 1, Conv, [512, 1, 1]], # route backbone P5
[[-1, -2], 1, Concat, [1]],
[-1, 3, BottleneckCSP2, [512]], # 25
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[-20, 1, Conv, [256, 1, 1]], # route backbone P4
[[-1, -2], 1, Concat, [1]],
[-1, 3, BottleneckCSP2, [256]], # 30
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[-27, 1, Conv, [128, 1, 1]], # route backbone P3
[[-1, -2], 1, Concat, [1]],
[-1, 3, BottleneckCSP2, [128]], # 35
[-1, 1, Conv, [256, 3, 1]],
[-2, 1, Conv, [256, 3, 2]],
[[-1, 30], 1, Concat, [1]], # cat
[-1, 3, BottleneckCSP2, [256]], # 39
[-1, 1, Conv, [512, 3, 1]],
[-2, 1, Conv, [512, 3, 2]],
[[-1, 25], 1, Concat, [1]], # cat
[-1, 3, BottleneckCSP2, [512]], # 43
[-1, 1, Conv, [1024, 3, 1]],
[-2, 1, Conv, [512, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat
[-1, 3, BottleneckCSP2, [512]], # 47
[-1, 1, Conv, [1024, 3, 1]],
[-2, 1, Conv, [512, 3, 2]],
[[-1, 15], 1, Concat, [1]], # cat
[-1, 3, BottleneckCSP2, [512]], # 51
[-1, 1, Conv, [1024, 3, 1]],
[[36,40,44,48,52], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
]
# {YOLOv4-P5, YOLOv4-P6, YOLOv4-P7} use input resolution {896, 1280, 1536} for training respectively.
# 我在V100上训练,但是对于P7而言,在896的分辨率下,batch size=4才可以正常训练
python37 -m torch.distributed.launch --nproc_per_node 4 train.py --batch-size 64 --img 896 896 --data eus.yaml --cfg models/eus/yolov4-p7.yaml --weights 'pretrain/yolov4-p7.pt' --sync-bn --device 0 --name yolov4-p7
python37 -m torch.distributed.launch --nproc_per_node 4 train.py --batch-size 64 --img 896 896 --data eus.yaml --cfg models/eus/yolov4-p7.yaml --sync-bn --device 0 --name yolov4-p7
python train.py --batch-size 64 --img 896 896 --data eus.yaml --cfg models/eus/yolov4-p7.yaml --weights 'pretrain/yolov4-p7.pt' --sync-bn --device 0 --name yolov4-p7
python --nproc_per_node 4 train.py --batch-size 64 --img 896 896 --data eus.yaml --cfg models/eus/yolov4-p7.yaml --weights 'pretrain/yolov4-p7.pt' --sync-bn --device 0 --name yolov4-p7
python train.py --batch-size 64 --img 896 896 --data eus.yaml --cfg models/eus/yolov4-p7.yaml --weights '' --sync-bn --device 0 --name yolov4-p7
# V100下的训练
python train.py --batch-size 4 --img 896 896 --data eus.yaml --cfg models/eus/yolov4-p7.yaml --weights '' --sync-bn --device 0 --name yolov4-p7
python train.py --batch-size 8 --img 640 640 --data eus.yaml --cfg models/eus/yolov4-p7.yaml --weights '' --sync-bn --device 0 --name yolov4-p7
训练数据
测试数据
- 模型测试
# download {yolov4-p5.pt, yolov4-p6.pt, yolov4-p7.pt} and put them in /yolo/weights/ folder.
python test.py --img 896 --conf 0.001 --batch 8 --device 0 --data eus.yaml --weights weights/yolov4-p5.pt
python test.py --img 1280 --conf 0.001 --batch 8 --device 0 --data eus.yaml --weights weights/yolov4-p6.pt
python test.py --img 1536 --conf 0.001 --batch 8 --device 0 --data coco.yaml --weights weights/yolov4-p7.pt
- 模型推断
图像识别:
python test_img.py
视频识别:
python test_video.py
- 1.编译安装opencv
# download: https://github.com/opencv/opencv/archive/4.3.0.zip
# Install dependence
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get install libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libdc1394-22-dev
sudo apt-get install qtbase5-dev qtdeclarative5-dev
sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt-get update
sudo apt install libjasper1 libjasper-dev
# make
mkdir build && cd build
cmake .. -DWITH_QT=ON -DBUILD_TIFF=ON -DOPENCV_GENERATE_PKGCONFIG=ON -DCMAKE_INSTALL_PREFIX=/usr/local
sudo make -j16
sudo make install
# config
pkg-config --cflags opencv4
sudo gedit /etc/ld.so.conf.d/opencv.conf
and input
/usr/local/lib
如果报错,可参考:https://blog.csdn.net/darren2015zdc/article/details/74011918
- 2.编译安装yaml-cpp 0.6.3
download: https://github.com/jbeder/yaml-cpp/archive/yaml-cpp-0.6.3.zip
mkdir build && cd build
cmake ..
make -j
- 3.修改CMakeLists.txt
修改TensorRT下的CMakeLists.txt文件夹
cmake_minimum_required(VERSION 3.5)
project(ScaledYOLOv4_trt)
set(CMAKE_CXX_STANDARD 14)
# CUDA
find_package(CUDA REQUIRED)
message(STATUS "Find CUDA include at ${CUDA_INCLUDE_DIRS}")
message(STATUS "Find CUDA libraries: ${CUDA_LIBRARIES}")
# TensorRT
set(TENSORRT_ROOT /home/myuser/xujing/TensorRT-7.0.0.11)
find_path(TENSORRT_INCLUDE_DIR NvInfer.h
HINTS ${TENSORRT_ROOT} PATH_SUFFIXES include/)
message(STATUS "Found TensorRT headers at ${TENSORRT_INCLUDE_DIR}")
find_library(TENSORRT_LIBRARY_INFER nvinfer
HINTS ${TENSORRT_ROOT} ${TENSORRT_BUILD} ${CUDA_TOOLKIT_ROOT_DIR}
PATH_SUFFIXES lib lib64 lib/x64)
find_library(TENSORRT_LIBRARY_ONNXPARSER nvonnxparser
HINTS ${TENSORRT_ROOT} ${TENSORRT_BUILD} ${CUDA_TOOLKIT_ROOT_DIR}
PATH_SUFFIXES lib lib64 lib/x64)
set(TENSORRT_LIBRARY ${TENSORRT_LIBRARY_INFER} ${TENSORRT_LIBRARY_ONNXPARSER})
message(STATUS "Find TensorRT libs: ${TENSORRT_LIBRARY}")
# OpenCV
find_package(OpenCV REQUIRED)
message(STATUS "Find OpenCV include at ${OpenCV_INCLUDE_DIRS}")
message(STATUS "Find OpenCV libraries: ${OpenCV_LIBRARIES}")
set(COMMON_INCLUDE ./includes/common)
set(YAML_INCLUDE ./includes/yaml-cpp/include)
set(YAML_LIB_DIR ./includes/yaml-cpp/libs)
include_directories(${CUDA_INCLUDE_DIRS} ${TENSORRT_INCLUDE_DIR} /home/myuser/xujing/tensorRT_apply/opencv-4.3.0 ${COMMON_INCLUDE} ${YAML_INCLUDE})
link_directories(${YAML_LIB_DIR})
add_executable(ScaledYOLOv4_trt main.cpp ScaledYOLOv4.cpp)
target_link_libraries(ScaledYOLOv4_trt ${OpenCV_LIBRARIES} ${CUDA_LIBRARIES} ${TENSORRT_LIBRARY} yaml-cpp)
- 4.修改运行export_onnx.py
# 将TensorRT文件加下的export_onnx.py复制到项目根目录
# 修改模型路径和input图像大小
python export_onnx.py
- 5.编译ScaledYOLOv4
mkdir build && cd build
cmake ..
make -j
如果报错很可能是安装环境稳定或CMakeLists.txt链接库的路径问题,请自行检查解决。
编译成功后:
使用yolov4-p7做模型推断:
# 将onnx模型存放到config-p7.yaml指定的文件夹下
./ScaledYOLOv4_trt ../config-p7.yaml ../samples/
@article{wang2020scaled,
title={{Scaled-YOLOv4}: Scaling Cross Stage Partial Network},
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
journal={arXiv preprint arXiv:2011.08036},
year={2020}
}
https://github.com/linghu8812/tensorrt_inference/tree/master/ScaledYOLOv4