skip to main content
10.1145/2582112.2582166acmotherconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
tutorial

On Constant Factors in Comparison-Based Geometric Algorithms and Data Structures

Published: 08 June 2014 Publication History

Abstract

Many standard problems in computational geometry have been solved asymptotically optimally as far as comparison-based algorithms are concerned, but there has been little work focusing on improving the constant factors hidden in big-Oh bounds on the number of comparisons needed. In this paper, we consider orthogonal-type problems and present a number of results that achieve optimality in the constant factors of the leading terms, including:
• an algorithm for the 2D maxima problem that uses n lg h +O(n√lg h) comparisons, where h denotes the output size;
• a randomized algorithm for the 3D maxima problem that uses n lg h + O(n lg2/3 h) expected number of comparisons;
• a randomized algorithm for detecting intersections among a set of orthogonal line segments that uses n lg n + O(n√lg n) expected number of comparisons;
• a data structure for point location among 3D disjoint axis-parallel boxes that can answer queries in (3/2) lg n + O(lg lg n) comparisons;
• a data structure for point location in a 3D box subdivision that can answer queries in (4/3)lg n + O(√lgn) comparisons.
Some of the results can be adapted to solve nonorthogonal problems, such as 2D convex hulls and general line segment intersection.
Our algorithms and data structures use a variety of techniques, including Seidel and Adamy's planar point location method, weighted binary search, and height-optimal BSP trees.

References

[1]
P. Afshani, J. Barbay, and T. M. Chan. Instance-optimal geometric algorithms. In Proc. 50th Annu. IEEE Sympos. Found. Comput. Sci., pages 129--138, 2009.
[2]
S. Arya, T. Malamatos, D. M. Mount, and K. C. Wong. Optimal expected-case planar point location. SIAM J. Comput., 37:584--610, 2007.
[3]
J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput., C-28(9):643--647, 1979.
[4]
T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete Comput. Geom., 16:361--368, 1996.
[5]
T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discrete Comput. Geom., 16:369--387, 1996.
[6]
T. M. Chan. Klee's measure problem made easy. In Proc. 54th Annu. IEEE Sympos. Found. Comput. Sci., pages 410--419, 2013.
[7]
T. M. Chan. Persistent predecessor search and orthogonal point location on the word RAM. ACM Trans. Algorithms, 9(3):22, 2013.
[8]
T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching on the RAM, revisited. In Proc. 27th Annu. ACM Sympos. Comput. Geom., pages 1--10, 2011.
[9]
T. M. Chan and M. Pătraşcu. Transdichotomous results in computational geometry, I: Point location in sublogarithmic time. SIAM J. Comput., 39:703--729, 2009.
[10]
T. M. Chan, J. Snoeyink, and C. K. Yap. Primal dividing and dual pruning: Output-sensitive construction of 4-d polytopes and 3-d Voronoi diagrams. Discrete Comput. Geom., 18:433--454, 1997.
[11]
B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions. J. ACM, 34(1):1--27, January 1987.
[12]
B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Algorithms for bichromatic line segment problems and polyhedral terrains. Algorithmica, 11:116--132, 1994.
[13]
B. Chazelle and J. Matoušek. Derandomizing an output-sensitive convex hull algorithm in three dimensions. Comput. Geom. Theory Appl., 5:27--32, 1995.
[14]
K. L. Clarkson. New applications of random sampling in computational geometry. Discrete Comput. Geom., 2:195--222, 1987.
[15]
K. L. Clarkson. More output-sensitive geometric algorithms. In Proc. 35th Annu. IEEE Sympos. Found. Comput. Sci., pages 695--702, 1994.
[16]
K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. Discrete Comput. Geom., 4:387--421, 1989.
[17]
W. Cunto and J. I. Munro. Average case selection. J. ACM, 36:270--279, 1989.
[18]
D. Dor and U. Zwick. Selecting the median. SIAM J. Comput., 28:1722--1758, 1999.
[19]
D. Dor and U. Zwick. Median selection requires (2 + &epsis;)n comparisons. SIAM J. Discrete Math., 14:312--325, 2001.
[20]
T. Dubé. Dominance range-query: The one-reporting case. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 208--217, 1993.
[21]
A. Dumitrescu, J. S. B. Mitchell, and M. Sharir. Binary space partitions for axis-parallel segments, rectangles, and hyperrectangles. Discrete Comput. Geom., 31:207--227, 2004.
[22]
J. Ford, R. Lester, and S. M. Johnson. A tournament problem. Amer. Math. Monthly, 66:387--389, 1959.
[23]
G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking in X + Y and matrices with sorted rows and columns. J. Comput. Syst. Sci., 24:197--208, 1982.
[24]
M. J. Golin. A provably fast linear-expected-time maxima-finding algorithm. Algorithmica, 11:501--524, 1994.
[25]
G. H. Gonnet and J. I. Munro. Heaps on heaps. SIAM J. Comput., 15:964--971, 1986.
[26]
J. Hershberger, S. Suri, and C. D. Tóth. Binary space partitions of orthogonal subdivisions. SIAM J. Comput., 34:1380--1397, 2005.
[27]
R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Inform. Process. Lett., 2:18--21, 1973.
[28]
K. Kaligosi, K. Mehlhorn, J. I. Munro, and P. Sanders. Towards optimal multiple selection. In Proc. 32nd Int. Colloq. Automata, Languages and Programming, volume 3580 of Lecture Notes Comput. Sci., pages 103--114. Springer-Verlag, 2005.
[29]
D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for finding maximal vectors. In Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 89--96, 1985.
[30]
D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput., 15:287--299, 1986.
[31]
D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley, Reading, MA, 1973.
[32]
H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors. J. ACM, 22:469--476, 1975.
[33]
Z. Li and B. A. Reed. Heap building bounds. In Proc. 9th Workshop Algorithms Data Struct., volume 3608, pages 14--23. Springer-Verlag, 2005.
[34]
Giuseppe Liotta, Franco P. Preparata, and Roberto Tamassia. Robust proximity queries: An illustration of degree-driven algorithm design. SIAM J. Comput., 28(3):864--889, 1998.
[35]
K. Mehlhorn. Data Structures and Algorithm 1: Sorting and Searching, volume 1 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin/Heidelberg, Germany, 1981.
[36]
T. Ottmann, S. Schuierer, and S. Soundaralakshmi. Enumerating extreme points in higher dimensions. In Proc. 12th Sympos. Theoret. Aspects Comput. Sci., volume 900 of Lecture Notes Comput. Sci., pages 562--570. Springer-Verlag, 1995.
[37]
M. H. Overmars and C.-K. Yap. New upper bounds in Klee's measure problem. SIAM J. Comput., 20:1034--1045, 1991.
[38]
M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal objects. J. Algorithms, 13:99--113, 1992.
[39]
F. P. Preparata. A new approach to planar point location. SIAM J. Comput., 10(3):473--482, 1981.
[40]
F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985.
[41]
R. Seidel and U. Adamy. On the exact worst case complexity of planar point location. J. Algorithms, 37:189--217, 2000.
[42]
C. D. Tóth. Binary space partitions: Recent developments. In Combinatorial and Computational Geometry, volume 52 of MSRI Publications, pages 525--552. Cambridge University Press, 2005.

Cited By

View all
  • (2015)Improved bounds for orthogonal point enclosure query and point location in orthogonal subdivisions in R3Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms10.5555/2722129.2722144(200-211)Online publication date: 4-Jan-2015
  • (2015)Skyline Queries with Noisy ComparisonsProceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems10.1145/2745754.2745775(185-198)Online publication date: 20-May-2015

Index Terms

  1. On Constant Factors in Comparison-Based Geometric Algorithms and Data Structures

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    SOCG'14: Proceedings of the thirtieth annual symposium on Computational geometry
    June 2014
    588 pages
    ISBN:9781450325943
    DOI:10.1145/2582112
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 June 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. binary space partition
    2. comparison-based algorithms
    3. convex hull
    4. line segment intersection
    5. maxima
    6. point location

    Qualifiers

    • Tutorial
    • Research
    • Refereed limited

    Conference

    SOCG'14

    Acceptance Rates

    SOCG'14 Paper Acceptance Rate 60 of 175 submissions, 34%;
    Overall Acceptance Rate 625 of 1,685 submissions, 37%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 31 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2015)Improved bounds for orthogonal point enclosure query and point location in orthogonal subdivisions in R3Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms10.5555/2722129.2722144(200-211)Online publication date: 4-Jan-2015
    • (2015)Skyline Queries with Noisy ComparisonsProceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems10.1145/2745754.2745775(185-198)Online publication date: 20-May-2015

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media