Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Strong primality tests that are not sufficient
HTML articles powered by AMS MathViewer

by William Adams and Daniel Shanks PDF
Math. Comp. 39 (1982), 255-300 Request permission

Abstract:

A detailed investigation is given of the possible use of cubic recurrences in primality tests. No attempt is made in this abstract to cover all of the many topics examined in the paper. Define a doubly infinite set of sequences $A(n)$ by \[ A(n + 3) = rA(n + 2) - sA(n + 1) + A(n)\] with $A( - 1) = s$, $A(0) = 3$, and $A(1) = r$. If n is prime, $A(n) \equiv A(1)\;\pmod n$. Perrin asked if any composite satisfies this congruence if $r = 0$, $s = - 1$. The answer is yes, and our first example leads us to strengthen the condition by introducing the "signature" of n: \[ A( - n - 1),A( - n),A( - n + 1),A(n - 1),A(n),A(n + 1)\] $\bmod n$. Primes have three types of signatures depending on how they split in the cubic field generated by ${x^3} - r{x^2} + sx - 1 = 0$. Composites with "acceptable" signatures do exist but are very rare. The S-type signature, which corresponds to the completely split primes, has a very special role, and it may even be that I and Q type composites do not occur in Perrin’s sequence even though the I and Q primes comprise $5/6$ths of all primes. $A(n)\;\pmod n$ is easily computable in $O(\log n)$ operations. The paper closes with a p-adic analysis. This powerful tool sets the stage for our [12] which will be Part II of the paper.
References
Similar Articles
Additional Information
  • © Copyright 1982 American Mathematical Society
  • Journal: Math. Comp. 39 (1982), 255-300
  • MSC: Primary 10A25; Secondary 10-04, 12-04
  • DOI: https://doi.org/10.1090/S0025-5718-1982-0658231-9
  • MathSciNet review: 658231