Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Further evaluation of Khintchine’s constant
HTML articles powered by AMS MathViewer

by John W. Wrench PDF
Math. Comp. 14 (1960), 370-371 Request permission
References
  • A. Khintchine, Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361–382 (German). MR 1556899
  • Mark Kac, Statistical independence in probability, analysis and number theory. , The Carus Mathematical Monographs, No. 12, Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York, 1959. MR 0110114
  • D. H. Lehmer, Note on an Absolute Constant of Khintchine, Amer. Math. Monthly 46 (1939), no. 3, 148–152. MR 1524526, DOI 10.2307/2302463
  • D. Shanks, MTE 164, MTAC, v. 4, 1950, p. 28. R. Sherman Lehman, A Study of Regular Continued Fractions, BRL Report No. 1066, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, February 1959.
  • Paul Lévy, Sur le développement en fraction continue d’un nombre choisi au hasard, Compositio Math. 3 (1936), 286–303 (French). MR 1556945
  • Daniel Shanks and J. W. Wrench Jr., Khintchine’s constant, Amer. Math. Monthly 66 (1959), 276–279. MR 103167, DOI 10.2307/2309633
  • K. Knopp, Theory and Application of Infinite Series, (trans. from second German edition), Blackie & Son, Ltd., London, 1928, p. 183, 237. H. T. Davis, Tables of the Higher Mathematical Functions, vol. II, The Principia Press, Bloomington, Indiana, 1935, p. 230-233. J. W. Wrench, Jr., “A New Table of ${\pi ^n}/n!$,” UMT 63, MTAC, v. 3, 1948/49, p. 42-43.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65.25
  • Retrieve articles in all journals with MSC: 65.25
Additional Information
  • © Copyright 1960 American Mathematical Society
  • Journal: Math. Comp. 14 (1960), 370-371
  • MSC: Primary 65.25
  • DOI: https://doi.org/10.1090/S0025-5718-1960-0170455-1
  • MathSciNet review: 0170455