Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Projections of multiple climate-related coastal hazards for the US Southeast Atlantic

Abstract

Faced with accelerating sea level rise and changing ocean storm conditions, coastal communities require comprehensive assessments of climate-driven hazard impacts to inform adaptation measures. Previous studies have focused on flooding but rarely on other climate-related coastal hazards, such as subsidence, beach erosion and groundwater. Here, we project societal exposure to multiple hazards along the Southeast Atlantic coast of the United States. Assuming 1 m of sea level rise, more than 70% of the coastal residents and US$1 trillion in property are in areas projected to experience shallow and emerging groundwater, 15 times higher than daily flooding. Storms increase flooding exposure by an order of magnitude over daily flooding, which could impact up to ~50% of all coastal residents and US$770 billion in property value. The loss of up to ~80% of present-day beaches and high subsidence rates that currently affect over 1 million residents will exacerbate flooding and groundwater hazard risks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study area.
Fig. 2: Coastal hazard exposure across the study area.
Fig. 3: Population exposure (based on 2020 US Census) across the Southeast Atlantic coast study area.
Fig. 4: Projected shoreline change.
Fig. 5: Projected beach loss.

Similar content being viewed by others

Data availability

The following datasets are available at https://doi.org/10.5066/P9W91314 for North and South Carolina, and https://doi.org/10.5066/P9BQQTCI for the remaining study area: projections of coastal flood hazards and flood potential, projections of coastal water depths, projected groundwater head, projected water table depths, projected groundwater emergence and shoaling, nearshore water level, tide and non-tidal residual hindcasts (1979–2016), nearshore water level, tide and non-tidal residual future projections (2016–2050), nearshore parametric wave setup hindcast data (1979–2019), nearshore parametric wave setup future projections (2020–2050), projections of shoreline change of current and future (2005–2100) sea level rise scenarios, satellite-derived shorelines, and vertical land motion rates for the years 2007 to 2020.

Code availability

The code for the coastal change model is available at https://doi.org/10.5066/P95T9188. All other codes are available upon request.

References

  1. Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).

    Google Scholar 

  2. Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).

    CAS  Google Scholar 

  3. Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28–39 (2020).

    Google Scholar 

  4. Taherkhani, M. et al. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 10, 6466 (2020).

    CAS  Google Scholar 

  5. May, C. L. et al. in Fifth National Climate Assessment (eds Crimmins, A. R. et al.) Ch. 9 (US Global Change Research Program, 2023).

  6. Barnard, P. L. et al. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 9, 4309 (2019).

    Google Scholar 

  7. Hinkel, J. et al. A global analysis of erosion of sandy beaches and sea-level rise: an application of DIVA. Glob. Planet. Change 111, 150–158 (2013).

    Google Scholar 

  8. Rotzoll, K. & Fletcher, C. H. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Change 3, 477–481 (2013).

    Google Scholar 

  9. Allison, M. et al. Global risks and research priorities for coastal subsidence. Eos 97, 22–27 (2016).

    Google Scholar 

  10. Tebaldi, C., Strauss, B. H. & Zervas, C. E. Modelling sea level rise impacts on storm surges along US coasts. Environ. Res. Lett. 7, 014032 (2012).

    Google Scholar 

  11. Stockdon, H. F. et al. Operational forecasts of wave-driven water levels and coastal hazards for US Gulf and Atlantic coasts. Commun. Earth Environ. 4, 169 (2023).

    Google Scholar 

  12. Rahimi, R., Tavakol-Davani, H., Graves, C., Gomez, A. & Valipour, M. F. Compound inundation impacts of coastal climate change: sea-level rise, groundwater rise and coastal precipitation. Water 12, 2776 (2020).

    Google Scholar 

  13. Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F. & Matthew, R. A. Compounding effects of sea level rise and fluvial flooding. Proc. Natl Acad. Sci. USA 114, 9785–9790 (2017).

    CAS  Google Scholar 

  14. Sweet, W. V. et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines NOAA Technical Report NOS 01 (NOAA, National Ocean Service, 2022).

  15. Flick, R. E., Chadwick, D. B., Briscoe, J. & Harper, K. C. ‘Flooding’ versus ‘inundation’. Eos 93, 365–366 (2012).

    Google Scholar 

  16. Slagel, M. J. & Griggs, G. B. Cumulative losses of sand to the California coast by dam impoundment. J. Coast. Res. 24, 571–584 (2008).

    Google Scholar 

  17. Lentz, E. E. et al. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat. Clim. Change 6, 696–700 (2016).

    Google Scholar 

  18. Vitousek, S., Vos, K., Splinter, K. D., Erikson, L. & Barnard, P. L. A model integrating satellite‐derived shoreline observations for predicting fine‐scale shoreline response to waves and sea‐level rise across large coastal regions. J. Geophys. Res. Earth Surf. 128, e2022JF006936 (2023).

    Google Scholar 

  19. Vousdoukas, M. I. et al. Sandy coastlines under threat of erosion. Nat. Clim. Change 10, 260–263 (2020).

    Google Scholar 

  20. Pontee, N. Defining coastal squeeze: a discussion. Ocean Coast. Manag. 84, 204–207 (2013).

    Google Scholar 

  21. Sukop, M. C., Rogers, M., Guannel, G., Infanti, J. M. & Hagemann, K. High temporal resolution modeling of the impact of rain, tides and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA. Sci. Total Environ. 616–617, 1668–1688 (2018).

    Google Scholar 

  22. Befus, K. M., Barnard, P. L., Hoover, D. J., Finzi Hart, J. A. & Voss, C. I. Increasing threat of coastal groundwater hazards from sea-level rise in California. Nat. Clim. Change 10, 946–952 (2020).

    Google Scholar 

  23. Hill, K., Hirschfeld, D., Lindquist, C., Cook, F. & Warner, S. Rising coastal groundwater as a result of sea-level rise will influence contaminated coastal sites and underground infrastructure. Earth’s Future 11, e2023EF003825 (2023).

    Google Scholar 

  24. Cao, A. et al. Future of Asian deltaic megacities under sea level rise and land subsidence: current adaptation pathways for Tokyo, Jakarta, Manila and Ho Chi Minh City. Curr. Opin. Environ. Sustain. 50, 87–97 (2021).

    Google Scholar 

  25. Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2021).

    Google Scholar 

  26. Brown, S. & Nicholls, R. J. Subsidence and human influences in mega deltas: the case of the Ganges–Brahmaputra–Meghna. Sci. Total Environ. 527–528, 362–374 (2015).

    Google Scholar 

  27. Ohenhen, L. O., Shirzaei, M. & Barnard, P. L. Slowly but surely: exposure of communities and infrastructure to subsidence on the US East Coast. Proc. Natl Acad. Sci. Nexus 3, pgad426 (2024).

    Google Scholar 

  28. Candela, T. & Koster, K. The many faces of anthropogenic subsidence. Science 376, 1381–1382 (2022).

    CAS  Google Scholar 

  29. Parsons, T., Wu, P.-C., Wei, M. & D’Hondt, S. The weight of New York City: possible contributions to subsidence from anthropogenic sources. Earth’s Future 11, e2022EF003465 (2023).

    Google Scholar 

  30. Ohenhen, L. O. & Shirzaei, M. Land subsidence hazard and building collapse risk in the coastal city of Lagos, West Africa. Earth’s Future 10, e2022EF003219 (2022).

    CAS  Google Scholar 

  31. Wu, P.-C., Wei, M. & D'Hondt, S. Subsidence in coastal cities throughout the world observed by InSAR. Geophys. Res. Lett. 49, e2022GL098477 (2022).

    Google Scholar 

  32. Ohenhen, L. O., Shirzaei, M., Ojha, C., Sherpa, S. F. & Nicholls, R. J. Disappearing cities on US coasts. Nature 627, 108–115 (2024).

    CAS  Google Scholar 

  33. U.S. Billion-Dollar Weather and Climate Disasters (NOAA National Centers for Environmental Information, 2023); https://www.ncei.noaa.gov/access/billions/

  34. Continental United States Hurricane Impacts/Landfalls 1851–2022 (NOAA Hurricane Research Division, 2023); https://www.aoml.noaa.gov/hrd/hurdat/All_U.S._Hurricanes.html

  35. Klotzbach, P. J. et al. Trends in global tropical cyclone activity: 1990–2021. Geophys. Res. Lett. 49, e2021GL095774 (2022).

    Google Scholar 

  36. Garner, A. J. Observed increases in North Atlantic tropical cyclone peak intensification rates. Sci. Rep. 13, 16299 (2023).

    CAS  Google Scholar 

  37. Balaguru, K. et al. Increased U.S. coastal hurricane risk under climate change. Sci. Adv. 9, eadf0259 (2023).

    Google Scholar 

  38. Sallenger, A. H., Doran, K. S. & Howd, P. A. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Clim. Change 2, 884–888 (2012).

    Google Scholar 

  39. Dangendorf, S. et al. Acceleration of U.S. Southeast and Gulf coast sea-level rise amplified by internal climate variability. Nat. Commun. 14, 1935 (2023).

    CAS  Google Scholar 

  40. Ezer, T., Atkinson, L. P., Corlett, W. B. & Blanco, J. L. Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. J. Geophys. Res. Ocean 118, 685–697 (2013).

    Google Scholar 

  41. Valle-Levinson, A., Dutton, A. & Martin, B. Spatial and temporal variability of sea level rise hot spots over the eastern United States. Geophys. Res. Lett. 44, 7876–7882 (2017).

    Google Scholar 

  42. Yin, J. & Goddard, P. B. Oceanic control of sea level rise patterns along the East Coast of the United States. Geophys. Res. Lett. 40, 5514–5520 (2013).

    Google Scholar 

  43. Domingues, R., Goni, G., Baringer, M. & Volkov, D. What caused the accelerated sea level changes along the U.S. East Coast during 2010–2015?. Geophys. Res. Lett. 45, 13,367–13,376 (2018).

    Google Scholar 

  44. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  45. Wood, N., Jones, J., Henry, K., Ng, P. & Hou, C. Y. Hazard Exposure Reporting and Analytics (USGS, accessed 25 April 2024); https://www.usgs.gov/apps/hera

  46. Erikson, L. H. et al. Ocean Wave Time-Series Data Simulated with a Global-Scale Numerical Wave Model Under the Influence of Projected CMIP6 Wind and Sea Ice Fields (USGS, 2022); https://doi.org/10.5066/P9KR0RFM

  47. Hauer, M. E., Evans, J. M. & Mishra, D. R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Change 6, 691–695 (2016).

    Google Scholar 

  48. Hauer, M. E. Population projections for U.S. counties by age, sex and race controlled to shared socioeconomic pathway. Sci. Data 6, 190005 (2019).

    Google Scholar 

  49. Murray, A. B., Gopalakrishnan, S., McNamara, D. E. & Smith, M. D. Progress in coupling models of human and coastal landscape change. Comput. Geosci. 53, 30–38 (2013).

    Google Scholar 

  50. McNamara, D. E., Lazarus, E. D. & Goldstein, E. B. Human–coastal coupled systems: ten questions. Camb. Prisms Coast. Futures 1, e20 (2023).

    Google Scholar 

  51. Anarde, K. A., Moore, L. J., Murray, A. B. & Reeves, I. R. B. The future of developed barrier systems—part I: pathways toward uninhabitability, drowning and rebound. Earth’s Future 12, e2023EF003672 (2024).

    Google Scholar 

  52. Habel, S., Fletcher, C. H., Barbee, M. M. & Fornace, K. L. Hidden threat: the influence of sea-level rise on coastal groundwater and the convergence of impacts on municipal infrastructure. Annu. Rev. Mar. Sci. 16, 81–103 (2024).

    Google Scholar 

  53. Knott, J. F., Elshaer, M., Daniel, J. S., Jacobs, J. M. & Kirshen, P. Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp. Res. Rec. 2639, 1–10 (2017).

    Google Scholar 

  54. Humphrey, C. P., Iverson, G. & O’Driscoll, M. Nitrogen treatment efficiency of a large onsite wastewater system in relation to water table dynamics. CLEAN - Soil, Air, Water 45, 1700551 (2017).

    Google Scholar 

  55. Appelbaum, S. J. Determination of urban flood damage. J. Water Resour. Plan. Manag. 111, 269–283 (1985).

    Google Scholar 

  56. Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).

    Google Scholar 

  57. Ganju, N. K. et al. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8, 14156 (2017).

    CAS  Google Scholar 

  58. Huang, Y. et al. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Glob. Change Biol. 16, 680–695 (2010).

  59. Pendleton, L. et al. Estimating global ‘blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    CAS  Google Scholar 

  60. Dugan, J. E., Hubbard, D. M., Rodil, I. F., Revell, D. L. & Schroeter, S. Ecological effects of coastal armoring on sandy beaches. Mar. Ecol. 29, 160–170 (2008).

    Google Scholar 

  61. Kirwan, M. & Megonigal, J. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    CAS  Google Scholar 

  62. Thorne, K. et al. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4, eaao3270 (2018).

    Google Scholar 

  63. Barnard, P. L. et al. Multiple climate change-driven tipping points for coastal systems. Sci. Rep. 11, 15560 (2021).

    CAS  Google Scholar 

  64. Narayan, S. et al. The value of coastal wetlands for flood damage reduction in the northeastern USA. Sci. Rep. 7, 9463 (2017).

    Google Scholar 

  65. van Coppenolle, R. & Temmerman, S. A global exploration of tidal wetland creation for nature-based flood risk mitigation in coastal cities. Estuar. Coast. Shelf Sci. 226, 106262 (2019).

    Google Scholar 

  66. Fairchild, T. P. et al. Coastal wetlands mitigate storm flooding and associated costs in estuaries. Environ. Res. Lett. 16, 074034 (2021).

    Google Scholar 

  67. Hsiang, S. et al. in Fifth National Climate Assessment (eds Crimmins, A. R. et al.) Ch. 19 (US Global Change Research Program, 2023).

  68. Patterson, D. L., Wright, H. & Harris, P. N. A. Health risks of flood disasters. Clin. Infect. Dis. 67, 1450–1454 (2018).

    Google Scholar 

  69. Tyler, D. et al. Topobathymetric Model of the Coastal Carolinas, 1851 to 2020 (USGS, 2022); https://doi.org/10.5066/P9MPA8K0

  70. Cushing, W. M. et al. Topobathymetric Model of Coastal Georgia, 1851 to 2020 (USGS, 2022); https://doi.org/10.5066/P9J11VV6

  71. Danielson, J. J. et al. Topobathymetric elevation model development using a new methodology—Coastal National Elevation Database. J. Coast. Res. 76, 75–89 (2016).

    Google Scholar 

  72. Danielson, J. J., Poppenga, S., Tyler, D. J., Palaseanu-Lovejoy, M. & Gesch, D. B. Coastal National Elevation Database: Fact Sheet 2018–3037 (USGS, 2018); https://doi.org/10.3133/fs20183037

  73. Coastal National Elevation Database (CoNED) Project - Topobathymetric Digital Elevation Model (TBDEM) for the Atlantic Coast (USGS, accessed 1 April 2021); https://topotools.cr.usgs.gov/topobathy_viewer/

  74. Irwin, J. R., Danielson, J. J. & Robbins, T. J. Coastal Carolinas Topobathymetric Model: Field Validation Data, 2021 (USGS, 2021); https://doi.org/10.5066/P902W30G

  75. U.S. Coastal Relief Model Vol. 3—Florida and East Gulf of Mexico (National Geophysical Data Center, accessed 1 April 2021); https://doi.org/10.7289/V5W66HPP

  76. Continuously Updated Digital Elevation Model (CUDEM)—1/9 Arc-Second Resolution Bathymetric-Topographic Tiles (Cooperative Institute for Research in Environmental Sciences at the University of Colorado, accessed 1 April 2021); https://doi.org/10.25921/ds9v-ky35

  77. USGS One Meter DEM for Florida (USGS, accessed April 2021); https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/1m/Projects/FL_Southeast_B1_2018/

  78. Ohenhen, L. O., Shirzaei, M., Ojha, C. & Kirwan, M. L. Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion. Nat. Commun. 14, 2038 (2023).

    CAS  Google Scholar 

  79. Shirzaei, M. & Bürgmann, R. Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms. Geophys. Res. Lett. 39, L01305 (2012).

    Google Scholar 

  80. Shirzaei, M. A wavelet-based multitemporal DInSAR algorithm for monitoring ground surface motion. IEEE Geosci. Remote Sens. Lett. 10, 456–460 (2013).

    Google Scholar 

  81. Shirzaei, M., Manga, M. & Zhai, G. Hydraulic properties of injection formations constrained by surface deformation. Earth Planet. Sci. Lett. 515, 125–134 (2019).

    CAS  Google Scholar 

  82. Lee, J.-C. & Shirzaei, M. Novel algorithms for pair and pixel selection and atmospheric error correction in multitemporal InSAR. Remote Sens. Environ. 286, 113447 (2023).

    Google Scholar 

  83. Shirzaei, M. & Walter, T. R. Estimating the effect of satellite orbital error using wavelet based robust regression applied to InSAR deformation data. IEEE Trans. Geosci. Remote Sens. 49, 4600–4605 (2011).

    Google Scholar 

  84. O’Neill, A. C. et al. Projected 21st century coastal flooding in the Southern California Bight. Part 1: Development of the third generation CoSMoS model. J. Mar. Sci. Eng. 6, 59 (2018).

    Google Scholar 

  85. Barnard, P. L. et al. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards 74, 1095–1125 (2014).

    Google Scholar 

  86. Erikson, L. H. et al. Projected 21st century coastal flooding in the Southern California Bight. Part 2: Tools for assessing climate change driven coastal hazards and socio-economic impacts. J. Mar. Sci. Eng. 6, 76 (2018).

    Google Scholar 

  87. Leijnse, T. et al. Rapid modeling of compound flooding across broad coastal regions and the necessity to include rainfall-driven processes: a case study of Hurricane Florence. In Proc. Coastal Sediments 2023 (eds Wang, P. et al.) 2576–2584 (World Scientific, 2023).

  88. Parker, K. et al. Relative contributions of water-level components along the US Southeast Atlantic coast from a regional-scale water-level hindcast. Nat. Hazards 117, 2219–2248 (2023).

    Google Scholar 

  89. Nederhoff, K. et al. Tropical or extratropical cyclones: what drives the compound flood hazard, impact and risk for the United States Southeast Atlantic coast? Nat. Hazards 120, 8779–8825 (2024).

    Google Scholar 

  90. Leijnse, T., van Ormondt, M., Nederhoff, K. & van Dongeren, A. Modeling compound flooding in coastal systems using a computationally efficient reduced-physics solver: including fluvial, pluvial, tidal, wind- and wave-driven processes. Coast. Eng. 163, 103796 (2021).

    Google Scholar 

  91. Doran, K. S. et al. Lidar-Derived Beach Morphology (Dune Crest, Dune Toe, and Shoreline) for U.S. Sandy Coastlines (Ver. 4.0, October 2020) (USGS, 2017); https://doi.org/10.5066/F7GF0S0Z

  92. van Ormondt, M., Leijnse, T., de Goede, R., Nederhoff, K. & van Dongeren, A. A subgrid method for the linear inertial equations of a compound flood model. Preprint at https://doi.org/10.5194/egusphere-2024-1839 (2024).

  93. Kahl, D. T., Schubert, J. E., Jong-Levinger, A. & Sanders, B. F. Grid edge classification method to enhance levee resolution in dual-grid flood inundation models. Adv. Water Resour. 168, 104287 (2022).

    Google Scholar 

  94. Falgout, J. T., Gordon, J., Williams, B. & Davis, M. J. USGS Denali Supercomputer (USGS Advanced Research Computing, accessed 15 July 2024); https://doi.org/10.5066/P9PSW367

  95. van Ormondt, M., Nederhoff, K. & van Dongeren, A. Delft Dashboard: a quick setup tool for hydrodynamic models. J. Hydroinform. 22, 510–527 (2020).

    Google Scholar 

  96. Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H. & Ward, P. J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).

    CAS  Google Scholar 

  97. Muis, S. et al. Global Sea Level Change Time Series from 1950 to 2050 Derived from Reanalysis and High Resolution CMIP6 Climate Projections (Copernicus Climate Change Service Climate Data Store, 2022); https://doi.org/10.24381/cds.a6d42d60

  98. Muis, S. et al. Global projections of storm surges using high-resolution CMIP6 climate models. Earth’s Future 11, e2023EF003479 (2023).

    Google Scholar 

  99. Stockdon, H. F., Holman, R. A., Howd, P. A. & Sallenger, A. H. Jr. Empirical parameterization of setup, swash and runup. Coast. Eng. 53, 573–588 (2006).

    Google Scholar 

  100. Haarsma, R. J. et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).

    Google Scholar 

  101. Scoccimarro, E., Bellucci, A. & Peano, D. CMCC CMCC-CM2-VHR4 Model Output Prepared for CMIP6 HighResMIP. Version 20220601 (Earth System Grid Federation, 2017); https://doi.org/10.22033/ESGF/CMIP6.1367

  102. Guo, H. et al. NOAA-GFDL GFDL-CM4 Model Output Prepared for CMIP6 ScenarioMIP SSP585. Version 20190906 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.9268

  103. Roberts, M. J. MOHC HadGEM3-GC31-HM Model Output Prepared for CMIP6 HighResMIP Highres-future. Version 20191211 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.5984

  104. Roberts, M. J. et al. Projected future changes in tropical cyclones using the CMIP6 HighResMIP Multimodel Ensemble. Geophys. Res. Lett. 47, 2020GL088662 (2020).

    Google Scholar 

  105. Nadal-Caraballo, N. C. et al. Coastal hazards system: a probabilistic coastal hazard analysis framework. J. Coast. Res. SI95, 1211–1216 (2020).

    Google Scholar 

  106. Nadal-Caraballo, N. C. et al. Coastal Hazards System–Louisiana (CHS-LA) (US Army Engineer Research and Development Center, 2022); https://doi.org/10.21079/11681/45286

  107. Performance Evaluation of the New Orleans and Southeast Louisiana Hurricane Protection System Draft Final Report of the Interagency Performance Evaluation Task Force Volume VIII—Engineering and Operational Risk and Reliability Analysis (Interagency Performance Evaluation Task Force, 2006).

  108. NOAA National Water Model CONUS Retrospective Dataset (NOAA, accessed 1 April 2021); https://registry.opendata.aws/nwm-archive

  109. Barnard, P. L. et al. Future Coastal Hazards Along the U.S. North and South Carolina Coasts (USGS, 2023); https://doi.org/10.5066/P9W91314

  110. Barnard, P. L. et al. Future Coastal Hazards Along the U.S. Southeast Atlantic Coast (USGS, 2023); https://doi.org/10.5066/P9BQQTCI

  111. Niswonger, R. G., Panday, S. & Ibaraki, M. MODFLOW-NWT, A Newton Formulation for MODFLOW-2005 Techniques and Methods 6-A37 (USGS, 2011); https://doi.org/10.3133/tm6A37

  112. Estimation of Vertical Uncertainties in VDatum (NOAA, 2018); https://vdatum.noaa.gov/docs/est_uncertainties.html

  113. Zell, W. O. & Sanford, W. E. Calibrated simulation of the long‐term average surficial groundwater system and derived spatial distributions of its characteristics for the contiguous United States. Water Resour. Res. 55, e2019WR026724 (2020).

    Google Scholar 

  114. USGS Water Data for the Nation (USGS, accessed 20 December 2021); http://waterdata.usgs.gov/nwis/

  115. Haitjema, H. M. & Mitchell-Bruker, S. Are water tables a subdued replica of the topography? Ground Water 43, 050824075421008 (2005).

    Google Scholar 

  116. Vitousek, S., Barnard, P. L., Limber, P., Erikson, L. H. & Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 122, 782–806 (2017).

    Google Scholar 

  117. Vitousek et al. The application of ensemble wave forcing to quantify uncertainty of shoreline change models. J. Geophys. Res. Earth Surf. 126, e2019JF005506 (2021).

    Google Scholar 

  118. Vitousek, S. CoSMoS-COAST: The Coastal, One-Line, Assimilated, Simulation Tool of the Coastal Storm Modeling System (USGS, 2023); https://doi.org/10.5066/P95T9188

  119. Davidson-Arnott, R. G. Conceptual model of the effects of sea level rise on sandy coasts. J. Coast. Res. 21, 1166–1172 (2005).

    Google Scholar 

  120. Wolinsky, M. A. & Murray, A. B. A unifying framework for shoreline migration: 2. Application to wave‐dominated coasts. J. Geophys. Res. Earth Surf. 114, F01009 (2009).

    Google Scholar 

  121. Davidson-Arnott, R. G. & Bauer, B. O. Controls on the geomorphic response of beach-dune systems to water level rise. J. Great Lakes Res. 47, 1594–1612 (2021).

    Google Scholar 

  122. Hersbach, H. et al. ERA5 Hourly Data on Single Levels from 1940 to Present (Copernicus Climate Change Service Climate Data Store, accessed 6 August 2020); https://doi.org/10.24381/cds.adbb2d47

  123. Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A. & Turner, I. L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 150, 160–174 (2019).

    Google Scholar 

  124. Elko, N. et al. A century of US beach nourishment. Ocean Coast. Manag. 199, 105406 (2021).

    Google Scholar 

  125. Jones, J. M., Henry, K., Wood, N. & Jamieson, M. HERA: a dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios. Comput. Geosci. 109, 124–133 (2017).

    Google Scholar 

  126. Explore Census Data (US Census Bureau, accessed 3 March 2023); https://data.census.gov/cedsci/

  127. Homeland Infrastructure Foundation-Level Data (US Department of Homeland Security, accessed 3 March 2023); https://gii.dhs.gov/hifld/

  128. Jones, J. et al. Community Exposure to Future Coastal Hazards for Florida, USA, Reference Year 2020 (USGS, 2023); https://doi.org/10.5066/P9V3XUNQ

  129. Jones, J. et al. Community Exposure to Future Coastal Hazards for Georgia, USA, Reference Year 2020 (USGS, 2023); https://doi.org/10.5066/P9DCC1HK

  130. Jones, J. et al. Community Exposure to Future Coastal Hazards for U.S. South Carolina, Reference Year 2020 (USGS, 2023); https://doi.org/10.5066/P97XOF91

  131. Jones, J. et al. Community Exposure to Future Coastal Hazards for U.S. North Carolina, Reference Year 2020 (USGS, 2023); https://doi.org/10.5066/P9Q2CCCH

  132. Jones, J. et al. Community Exposure to Future Coastal Hazards for Virginia, USA, Reference Year 2020 (USGS, 2023); https://doi.org/10.5066/P93JG2BN

  133. National Land Cover Database (Multi-Resolution Land Characteristics Consortium, accessed 3 March 2020); https://www.mrlc.gov/data

  134. Erikson, L. H., O’Neill, A., Barnard, P. L., Vitousek, S. & Limber, P. W. Climate change-driven cliff and beach evolution at decadal to centennial time scales. In Proc. 8th International Conference on Coastal Dynamics 2017 (eds Aagaard, T. et al.) Paper No. 210 (2017).

  135. Hauer, M. E. et al. Assessing population exposure to coastal flooding due to sea level rise. Nat. Commun. 12, 6900 (2021).

    CAS  Google Scholar 

  136. Swain, D. L. et al. Increased flood exposure due to climate change and population growth in the United States. Earth’s Future 8, e2020EF00177 (2020).

    Google Scholar 

  137. Bates, P. D. et al. Combined modeling of US fluvial, pluvial and coastal flood hazard under current and future climates. Water Resour. Res. 57, e2020WR028673 (2021).

    Google Scholar 

Download references

Acknowledgements

Support for this research project was provided by the US Geological Survey’s Coastal and Marine Hazards and Resources Program and the Additional Supplemental Appropriations for Disaster Relief Act of 2019 (H.R. 2157) for work focused on North Carolina and South Carolina (P.L.B.). Flood hazard computing was performed at USGS Advanced Research Computing on the Denali Supercomputer94. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

P.L.B. conceived the study and led the paper writing. K.M.B. led the groundwater modelling. L.H.E., K.N. and K.A.P. led the flood modelling. A.C.F. and A.C.O. led hazard zone quality assurance and quality control, and internal review. C.M. led the tropical storm modelling. M.S. led the vertical land motion analyses. S.V. led the coastal change modelling. N.J.W. led the socioeconomic analyses. K.M.B., J.J.D., L.H.E., A.C.F., M.K.H., D.J.H., T.W.B.L., C.M., K.N., A.C.O., K.A.P., M.S., P.W.S., J.A.T., S.V. and N.J.W. participated in writing the paper. K.M.B., A.C.E., L.H.E., A.C.F., D.J.H., T.W.B.L., C.M., R.M., N.C.N.-C., K.N., A.C.O., K.A.P., L.O.O., J.A.T., M.v.O., K.V., J.M.J. and J.L.J. participated in developing the analyses.

Corresponding author

Correspondence to Patrick L. Barnard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Brett Sanders, Shengli Tao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Supplementary Table 1

Information on the CoSMoS framework of models and data used to support the coastal hazards presented in this study.

Supplementary Table 2

Flood exposure and groundwater exposure totals, summarized by states and combined, with median, maximum and minimum values.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnard, P.L., Befus, K.M., Danielson, J.J. et al. Projections of multiple climate-related coastal hazards for the US Southeast Atlantic. Nat. Clim. Chang. 15, 101–109 (2025). https://doi.org/10.1038/s41558-024-02180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-02180-2

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene