Abstract
Faced with accelerating sea level rise and changing ocean storm conditions, coastal communities require comprehensive assessments of climate-driven hazard impacts to inform adaptation measures. Previous studies have focused on flooding but rarely on other climate-related coastal hazards, such as subsidence, beach erosion and groundwater. Here, we project societal exposure to multiple hazards along the Southeast Atlantic coast of the United States. Assuming 1âm of sea level rise, more than 70% of the coastal residents and US$1 trillion in property are in areas projected to experience shallow and emerging groundwater, 15 times higher than daily flooding. Storms increase flooding exposure by an order of magnitude over daily flooding, which could impact up toâ~50% of all coastal residents and US$770 billion in property value. The loss of up toâ~80% of present-day beaches and high subsidence rates that currently affect over 1 million residents will exacerbate flooding and groundwater hazard risks.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The following datasets are available at https://doi.org/10.5066/P9W91314 for North and South Carolina, and https://doi.org/10.5066/P9BQQTCI for the remaining study area: projections of coastal flood hazards and flood potential, projections of coastal water depths, projected groundwater head, projected water table depths, projected groundwater emergence and shoaling, nearshore water level, tide and non-tidal residual hindcasts (1979â2016), nearshore water level, tide and non-tidal residual future projections (2016â2050), nearshore parametric wave setup hindcast data (1979â2019), nearshore parametric wave setup future projections (2020â2050), projections of shoreline change of current and future (2005â2100) sea level rise scenarios, satellite-derived shorelines, and vertical land motion rates for the years 2007 to 2020.
Code availability
The code for the coastal change model is available at https://doi.org/10.5066/P95T9188. All other codes are available upon request.
References
Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal floodingâa global assessment. PLoS ONE 10, e0118571 (2015).
Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).
Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28â39 (2020).
Taherkhani, M. et al. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 10, 6466 (2020).
May, C. L. et al. in Fifth National Climate Assessment (eds Crimmins, A. R. et al.) Ch. 9 (US Global Change Research Program, 2023).
Barnard, P. L. et al. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 9, 4309 (2019).
Hinkel, J. et al. A global analysis of erosion of sandy beaches and sea-level rise: an application of DIVA. Glob. Planet. Change 111, 150â158 (2013).
Rotzoll, K. & Fletcher, C. H. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Change 3, 477â481 (2013).
Allison, M. et al. Global risks and research priorities for coastal subsidence. Eos 97, 22â27 (2016).
Tebaldi, C., Strauss, B. H. & Zervas, C. E. Modelling sea level rise impacts on storm surges along US coasts. Environ. Res. Lett. 7, 014032 (2012).
Stockdon, H. F. et al. Operational forecasts of wave-driven water levels and coastal hazards for US Gulf and Atlantic coasts. Commun. Earth Environ. 4, 169 (2023).
Rahimi, R., Tavakol-Davani, H., Graves, C., Gomez, A. & Valipour, M. F. Compound inundation impacts of coastal climate change: sea-level rise, groundwater rise and coastal precipitation. Water 12, 2776 (2020).
Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F. & Matthew, R. A. Compounding effects of sea level rise and fluvial flooding. Proc. Natl Acad. Sci. USA 114, 9785â9790 (2017).
Sweet, W. V. et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines NOAA Technical Report NOS 01 (NOAA, National Ocean Service, 2022).
Flick, R. E., Chadwick, D. B., Briscoe, J. & Harper, K. C. âFloodingâ versus âinundationâ. Eos 93, 365â366 (2012).
Slagel, M. J. & Griggs, G. B. Cumulative losses of sand to the California coast by dam impoundment. J. Coast. Res. 24, 571â584 (2008).
Lentz, E. E. et al. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat. Clim. Change 6, 696â700 (2016).
Vitousek, S., Vos, K., Splinter, K. D., Erikson, L. & Barnard, P. L. A model integrating satelliteâderived shoreline observations for predicting fineâscale shoreline response to waves and seaâlevel rise across large coastal regions. J. Geophys. Res. Earth Surf. 128, e2022JF006936 (2023).
Vousdoukas, M. I. et al. Sandy coastlines under threat of erosion. Nat. Clim. Change 10, 260â263 (2020).
Pontee, N. Defining coastal squeeze: a discussion. Ocean Coast. Manag. 84, 204â207 (2013).
Sukop, M. C., Rogers, M., Guannel, G., Infanti, J. M. & Hagemann, K. High temporal resolution modeling of the impact of rain, tides and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA. Sci. Total Environ. 616â617, 1668â1688 (2018).
Befus, K. M., Barnard, P. L., Hoover, D. J., Finzi Hart, J. A. & Voss, C. I. Increasing threat of coastal groundwater hazards from sea-level rise in California. Nat. Clim. Change 10, 946â952 (2020).
Hill, K., Hirschfeld, D., Lindquist, C., Cook, F. & Warner, S. Rising coastal groundwater as a result of sea-level rise will influence contaminated coastal sites and underground infrastructure. Earthâs Future 11, e2023EF003825 (2023).
Cao, A. et al. Future of Asian deltaic megacities under sea level rise and land subsidence: current adaptation pathways for Tokyo, Jakarta, Manila and Ho Chi Minh City. Curr. Opin. Environ. Sustain. 50, 87â97 (2021).
Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40â58 (2021).
Brown, S. & Nicholls, R. J. Subsidence and human influences in mega deltas: the case of the GangesâBrahmaputraâMeghna. Sci. Total Environ. 527â528, 362â374 (2015).
Ohenhen, L. O., Shirzaei, M. & Barnard, P. L. Slowly but surely: exposure of communities and infrastructure to subsidence on the US East Coast. Proc. Natl Acad. Sci. Nexus 3, pgad426 (2024).
Candela, T. & Koster, K. The many faces of anthropogenic subsidence. Science 376, 1381â1382 (2022).
Parsons, T., Wu, P.-C., Wei, M. & DâHondt, S. The weight of New York City: possible contributions to subsidence from anthropogenic sources. Earthâs Future 11, e2022EF003465 (2023).
Ohenhen, L. O. & Shirzaei, M. Land subsidence hazard and building collapse risk in the coastal city of Lagos, West Africa. Earthâs Future 10, e2022EF003219 (2022).
Wu, P.-C., Wei, M. & D'Hondt, S. Subsidence in coastal cities throughout the world observed by InSAR. Geophys. Res. Lett. 49, e2022GL098477 (2022).
Ohenhen, L. O., Shirzaei, M., Ojha, C., Sherpa, S. F. & Nicholls, R. J. Disappearing cities on US coasts. Nature 627, 108â115 (2024).
U.S. Billion-Dollar Weather and Climate Disasters (NOAA National Centers for Environmental Information, 2023); https://www.ncei.noaa.gov/access/billions/
Continental United States Hurricane Impacts/Landfalls 1851â2022 (NOAA Hurricane Research Division, 2023); https://www.aoml.noaa.gov/hrd/hurdat/All_U.S._Hurricanes.html
Klotzbach, P. J. et al. Trends in global tropical cyclone activity: 1990â2021. Geophys. Res. Lett. 49, e2021GL095774 (2022).
Garner, A. J. Observed increases in North Atlantic tropical cyclone peak intensification rates. Sci. Rep. 13, 16299 (2023).
Balaguru, K. et al. Increased U.S. coastal hurricane risk under climate change. Sci. Adv. 9, eadf0259 (2023).
Sallenger, A. H., Doran, K. S. & Howd, P. A. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Clim. Change 2, 884â888 (2012).
Dangendorf, S. et al. Acceleration of U.S. Southeast and Gulf coast sea-level rise amplified by internal climate variability. Nat. Commun. 14, 1935 (2023).
Ezer, T., Atkinson, L. P., Corlett, W. B. & Blanco, J. L. Gulf Streamâs induced sea level rise and variability along the U.S. mid-Atlantic coast. J. Geophys. Res. Ocean 118, 685â697 (2013).
Valle-Levinson, A., Dutton, A. & Martin, B. Spatial and temporal variability of sea level rise hot spots over the eastern United States. Geophys. Res. Lett. 44, 7876â7882 (2017).
Yin, J. & Goddard, P. B. Oceanic control of sea level rise patterns along the East Coast of the United States. Geophys. Res. Lett. 40, 5514â5520 (2013).
Domingues, R., Goni, G., Baringer, M. & Volkov, D. What caused the accelerated sea level changes along the U.S. East Coast during 2010â2015?. Geophys. Res. Lett. 45, 13,367â13,376 (2018).
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Wood, N., Jones, J., Henry, K., Ng, P. & Hou, C. Y. Hazard Exposure Reporting and Analytics (USGS, accessed 25 April 2024); https://www.usgs.gov/apps/hera
Erikson, L. H. et al. Ocean Wave Time-Series Data Simulated with a Global-Scale Numerical Wave Model Under the Influence of Projected CMIP6 Wind and Sea Ice Fields (USGS, 2022); https://doi.org/10.5066/P9KR0RFM
Hauer, M. E., Evans, J. M. & Mishra, D. R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Change 6, 691â695 (2016).
Hauer, M. E. Population projections for U.S. counties by age, sex and race controlled to shared socioeconomic pathway. Sci. Data 6, 190005 (2019).
Murray, A. B., Gopalakrishnan, S., McNamara, D. E. & Smith, M. D. Progress in coupling models of human and coastal landscape change. Comput. Geosci. 53, 30â38 (2013).
McNamara, D. E., Lazarus, E. D. & Goldstein, E. B. Humanâcoastal coupled systems: ten questions. Camb. Prisms Coast. Futures 1, e20 (2023).
Anarde, K. A., Moore, L. J., Murray, A. B. & Reeves, I. R. B. The future of developed barrier systemsâpart I: pathways toward uninhabitability, drowning and rebound. Earthâs Future 12, e2023EF003672 (2024).
Habel, S., Fletcher, C. H., Barbee, M. M. & Fornace, K. L. Hidden threat: the influence of sea-level rise on coastal groundwater and the convergence of impacts on municipal infrastructure. Annu. Rev. Mar. Sci. 16, 81â103 (2024).
Knott, J. F., Elshaer, M., Daniel, J. S., Jacobs, J. M. & Kirshen, P. Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp. Res. Rec. 2639, 1â10 (2017).
Humphrey, C. P., Iverson, G. & OâDriscoll, M. Nitrogen treatment efficiency of a large onsite wastewater system in relation to water table dynamics. CLEAN - Soil, Air, Water 45, 1700551 (2017).
Appelbaum, S. J. Determination of urban flood damage. J. Water Resour. Plan. Manag. 111, 269â283 (1985).
Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450â457 (2019).
Ganju, N. K. et al. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8, 14156 (2017).
Huang, Y. et al. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Glob. Change Biol. 16, 680â695 (2010).
Pendleton, L. et al. Estimating global âblue carbonâ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).
Dugan, J. E., Hubbard, D. M., Rodil, I. F., Revell, D. L. & Schroeter, S. Ecological effects of coastal armoring on sandy beaches. Mar. Ecol. 29, 160â170 (2008).
Kirwan, M. & Megonigal, J. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53â60 (2013).
Thorne, K. et al. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4, eaao3270 (2018).
Barnard, P. L. et al. Multiple climate change-driven tipping points for coastal systems. Sci. Rep. 11, 15560 (2021).
Narayan, S. et al. The value of coastal wetlands for flood damage reduction in the northeastern USA. Sci. Rep. 7, 9463 (2017).
van Coppenolle, R. & Temmerman, S. A global exploration of tidal wetland creation for nature-based flood risk mitigation in coastal cities. Estuar. Coast. Shelf Sci. 226, 106262 (2019).
Fairchild, T. P. et al. Coastal wetlands mitigate storm flooding and associated costs in estuaries. Environ. Res. Lett. 16, 074034 (2021).
Hsiang, S. et al. in Fifth National Climate Assessment (eds Crimmins, A. R. et al.) Ch. 19 (US Global Change Research Program, 2023).
Patterson, D. L., Wright, H. & Harris, P. N. A. Health risks of flood disasters. Clin. Infect. Dis. 67, 1450â1454 (2018).
Tyler, D. et al. Topobathymetric Model of the Coastal Carolinas, 1851 to 2020 (USGS, 2022); https://doi.org/10.5066/P9MPA8K0
Cushing, W. M. et al. Topobathymetric Model of Coastal Georgia, 1851 to 2020 (USGS, 2022); https://doi.org/10.5066/P9J11VV6
Danielson, J. J. et al. Topobathymetric elevation model development using a new methodologyâCoastal National Elevation Database. J. Coast. Res. 76, 75â89 (2016).
Danielson, J. J., Poppenga, S., Tyler, D. J., Palaseanu-Lovejoy, M. & Gesch, D. B. Coastal National Elevation Database: Fact Sheet 2018â3037 (USGS, 2018); https://doi.org/10.3133/fs20183037
Coastal National Elevation Database (CoNED) Project - Topobathymetric Digital Elevation Model (TBDEM) for the Atlantic Coast (USGS, accessed 1 April 2021); https://topotools.cr.usgs.gov/topobathy_viewer/
Irwin, J. R., Danielson, J. J. & Robbins, T. J. Coastal Carolinas Topobathymetric Model: Field Validation Data, 2021 (USGS, 2021); https://doi.org/10.5066/P902W30G
U.S. Coastal Relief Model Vol. 3âFlorida and East Gulf of Mexico (National Geophysical Data Center, accessed 1 April 2021); https://doi.org/10.7289/V5W66HPP
Continuously Updated Digital Elevation Model (CUDEM)â1/9 Arc-Second Resolution Bathymetric-Topographic Tiles (Cooperative Institute for Research in Environmental Sciences at the University of Colorado, accessed 1 April 2021); https://doi.org/10.25921/ds9v-ky35
USGS One Meter DEM for Florida (USGS, accessed April 2021); https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/1m/Projects/FL_Southeast_B1_2018/
Ohenhen, L. O., Shirzaei, M., Ojha, C. & Kirwan, M. L. Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion. Nat. Commun. 14, 2038 (2023).
Shirzaei, M. & Bürgmann, R. Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms. Geophys. Res. Lett. 39, L01305 (2012).
Shirzaei, M. A wavelet-based multitemporal DInSAR algorithm for monitoring ground surface motion. IEEE Geosci. Remote Sens. Lett. 10, 456â460 (2013).
Shirzaei, M., Manga, M. & Zhai, G. Hydraulic properties of injection formations constrained by surface deformation. Earth Planet. Sci. Lett. 515, 125â134 (2019).
Lee, J.-C. & Shirzaei, M. Novel algorithms for pair and pixel selection and atmospheric error correction in multitemporal InSAR. Remote Sens. Environ. 286, 113447 (2023).
Shirzaei, M. & Walter, T. R. Estimating the effect of satellite orbital error using wavelet based robust regression applied to InSAR deformation data. IEEE Trans. Geosci. Remote Sens. 49, 4600â4605 (2011).
OâNeill, A. C. et al. Projected 21st century coastal flooding in the Southern California Bight. Part 1: Development of the third generation CoSMoS model. J. Mar. Sci. Eng. 6, 59 (2018).
Barnard, P. L. et al. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards 74, 1095â1125 (2014).
Erikson, L. H. et al. Projected 21st century coastal flooding in the Southern California Bight. Part 2: Tools for assessing climate change driven coastal hazards and socio-economic impacts. J. Mar. Sci. Eng. 6, 76 (2018).
Leijnse, T. et al. Rapid modeling of compound flooding across broad coastal regions and the necessity to include rainfall-driven processes: a case study of Hurricane Florence. In Proc. Coastal Sediments 2023 (eds Wang, P. et al.) 2576â2584 (World Scientific, 2023).
Parker, K. et al. Relative contributions of water-level components along the US Southeast Atlantic coast from a regional-scale water-level hindcast. Nat. Hazards 117, 2219â2248 (2023).
Nederhoff, K. et al. Tropical or extratropical cyclones: what drives the compound flood hazard, impact and risk for the United States Southeast Atlantic coast? Nat. Hazards 120, 8779â8825 (2024).
Leijnse, T., van Ormondt, M., Nederhoff, K. & van Dongeren, A. Modeling compound flooding in coastal systems using a computationally efficient reduced-physics solver: including fluvial, pluvial, tidal, wind- and wave-driven processes. Coast. Eng. 163, 103796 (2021).
Doran, K. S. et al. Lidar-Derived Beach Morphology (Dune Crest, Dune Toe, and Shoreline) for U.S. Sandy Coastlines (Ver. 4.0, October 2020) (USGS, 2017); https://doi.org/10.5066/F7GF0S0Z
van Ormondt, M., Leijnse, T., de Goede, R., Nederhoff, K. & van Dongeren, A. A subgrid method for the linear inertial equations of a compound flood model. Preprint at https://doi.org/10.5194/egusphere-2024-1839 (2024).
Kahl, D. T., Schubert, J. E., Jong-Levinger, A. & Sanders, B. F. Grid edge classification method to enhance levee resolution in dual-grid flood inundation models. Adv. Water Resour. 168, 104287 (2022).
Falgout, J. T., Gordon, J., Williams, B. & Davis, M. J. USGS Denali Supercomputer (USGS Advanced Research Computing, accessed 15 July 2024); https://doi.org/10.5066/P9PSW367
van Ormondt, M., Nederhoff, K. & van Dongeren, A. Delft Dashboard: a quick setup tool for hydrodynamic models. J. Hydroinform. 22, 510â527 (2020).
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H. & Ward, P. J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).
Muis, S. et al. Global Sea Level Change Time Series from 1950 to 2050 Derived from Reanalysis and High Resolution CMIP6 Climate Projections (Copernicus Climate Change Service Climate Data Store, 2022); https://doi.org/10.24381/cds.a6d42d60
Muis, S. et al. Global projections of storm surges using high-resolution CMIP6 climate models. Earthâs Future 11, e2023EF003479 (2023).
Stockdon, H. F., Holman, R. A., Howd, P. A. & Sallenger, A. H. Jr. Empirical parameterization of setup, swash and runup. Coast. Eng. 53, 573â588 (2006).
Haarsma, R. J. et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185â4208 (2016).
Scoccimarro, E., Bellucci, A. & Peano, D. CMCC CMCC-CM2-VHR4 Model Output Prepared for CMIP6 HighResMIP. Version 20220601 (Earth System Grid Federation, 2017); https://doi.org/10.22033/ESGF/CMIP6.1367
Guo, H. et al. NOAA-GFDL GFDL-CM4 Model Output Prepared for CMIP6 ScenarioMIP SSP585. Version 20190906 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.9268
Roberts, M. J. MOHC HadGEM3-GC31-HM Model Output Prepared for CMIP6 HighResMIP Highres-future. Version 20191211 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.5984
Roberts, M. J. et al. Projected future changes in tropical cyclones using the CMIP6 HighResMIP Multimodel Ensemble. Geophys. Res. Lett. 47, 2020GL088662 (2020).
Nadal-Caraballo, N. C. et al. Coastal hazards system: a probabilistic coastal hazard analysis framework. J. Coast. Res. SI95, 1211â1216 (2020).
Nadal-Caraballo, N. C. et al. Coastal Hazards SystemâLouisiana (CHS-LA) (US Army Engineer Research and Development Center, 2022); https://doi.org/10.21079/11681/45286
Performance Evaluation of the New Orleans and Southeast Louisiana Hurricane Protection System Draft Final Report of the Interagency Performance Evaluation Task Force Volume VIIIâEngineering and Operational Risk and Reliability Analysis (Interagency Performance Evaluation Task Force, 2006).
NOAA National Water Model CONUS Retrospective Dataset (NOAA, accessed 1 April 2021); https://registry.opendata.aws/nwm-archive
Barnard, P. L. et al. Future Coastal Hazards Along the U.S. North and South Carolina Coasts (USGS, 2023); https://doi.org/10.5066/P9W91314
Barnard, P. L. et al. Future Coastal Hazards Along the U.S. Southeast Atlantic Coast (USGS, 2023); https://doi.org/10.5066/P9BQQTCI
Niswonger, R. G., Panday, S. & Ibaraki, M. MODFLOW-NWT, A Newton Formulation for MODFLOW-2005 Techniques and Methods 6-A37 (USGS, 2011); https://doi.org/10.3133/tm6A37
Estimation of Vertical Uncertainties in VDatum (NOAA, 2018); https://vdatum.noaa.gov/docs/est_uncertainties.html
Zell, W. O. & Sanford, W. E. Calibrated simulation of the longâterm average surficial groundwater system and derived spatial distributions of its characteristics for the contiguous United States. Water Resour. Res. 55, e2019WR026724 (2020).
USGS Water Data for the Nation (USGS, accessed 20 December 2021); http://waterdata.usgs.gov/nwis/
Haitjema, H. M. & Mitchell-Bruker, S. Are water tables a subdued replica of the topography? Ground Water 43, 050824075421008 (2005).
Vitousek, S., Barnard, P. L., Limber, P., Erikson, L. H. & Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 122, 782â806 (2017).
Vitousek et al. The application of ensemble wave forcing to quantify uncertainty of shoreline change models. J. Geophys. Res. Earth Surf. 126, e2019JF005506 (2021).
Vitousek, S. CoSMoS-COAST: The Coastal, One-Line, Assimilated, Simulation Tool of the Coastal Storm Modeling System (USGS, 2023); https://doi.org/10.5066/P95T9188
Davidson-Arnott, R. G. Conceptual model of the effects of sea level rise on sandy coasts. J. Coast. Res. 21, 1166â1172 (2005).
Wolinsky, M. A. & Murray, A. B. A unifying framework for shoreline migration: 2. Application to waveâdominated coasts. J. Geophys. Res. Earth Surf. 114, F01009 (2009).
Davidson-Arnott, R. G. & Bauer, B. O. Controls on the geomorphic response of beach-dune systems to water level rise. J. Great Lakes Res. 47, 1594â1612 (2021).
Hersbach, H. et al. ERA5 Hourly Data on Single Levels from 1940 to Present (Copernicus Climate Change Service Climate Data Store, accessed 6 August 2020); https://doi.org/10.24381/cds.adbb2d47
Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A. & Turner, I. L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 150, 160â174 (2019).
Elko, N. et al. A century of US beach nourishment. Ocean Coast. Manag. 199, 105406 (2021).
Jones, J. M., Henry, K., Wood, N. & Jamieson, M. HERA: a dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios. Comput. Geosci. 109, 124â133 (2017).
Explore Census Data (US Census Bureau, accessed 3 March 2023); https://data.census.gov/cedsci/
Homeland Infrastructure Foundation-Level Data (US Department of Homeland Security, accessed 3 March 2023); https://gii.dhs.gov/hifld/
Jones, J. et al. Community Exposure to Future Coastal Hazards for Florida, USA, Reference Year 2020 (USGS, 2023); https://doi.org/10.5066/P9V3XUNQ
Jones, J. et al. Community Exposure to Future Coastal Hazards for Georgia, USA, Reference Year 2020 (USGS, 2023); https://doi.org/10.5066/P9DCC1HK
Jones, J. et al. Community Exposure to Future Coastal Hazards for U.S. South Carolina, Reference Year 2020 (USGS, 2023); https://doi.org/10.5066/P97XOF91
Jones, J. et al. Community Exposure to Future Coastal Hazards for U.S. North Carolina, Reference Year 2020 (USGS, 2023); https://doi.org/10.5066/P9Q2CCCH
Jones, J. et al. Community Exposure to Future Coastal Hazards for Virginia, USA, Reference Year 2020 (USGS, 2023); https://doi.org/10.5066/P93JG2BN
National Land Cover Database (Multi-Resolution Land Characteristics Consortium, accessed 3 March 2020); https://www.mrlc.gov/data
Erikson, L. H., OâNeill, A., Barnard, P. L., Vitousek, S. & Limber, P. W. Climate change-driven cliff and beach evolution at decadal to centennial time scales. In Proc. 8th International Conference on Coastal Dynamics 2017 (eds Aagaard, T. et al.) Paper No. 210 (2017).
Hauer, M. E. et al. Assessing population exposure to coastal flooding due to sea level rise. Nat. Commun. 12, 6900 (2021).
Swain, D. L. et al. Increased flood exposure due to climate change and population growth in the United States. Earthâs Future 8, e2020EF00177 (2020).
Bates, P. D. et al. Combined modeling of US fluvial, pluvial and coastal flood hazard under current and future climates. Water Resour. Res. 57, e2020WR028673 (2021).
Acknowledgements
Support for this research project was provided by the US Geological Surveyâs Coastal and Marine Hazards and Resources Program and the Additional Supplemental Appropriations for Disaster Relief Act of 2019 (H.R. 2157) for work focused on North Carolina and South Carolina (P.L.B.). Flood hazard computing was performed at USGS Advanced Research Computing on the Denali Supercomputer94. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.
Author information
Authors and Affiliations
Contributions
P.L.B. conceived the study and led the paper writing. K.M.B. led the groundwater modelling. L.H.E., K.N. and K.A.P. led the flood modelling. A.C.F. and A.C.O. led hazard zone quality assurance and quality control, and internal review. C.M. led the tropical storm modelling. M.S. led the vertical land motion analyses. S.V. led the coastal change modelling. N.J.W. led the socioeconomic analyses. K.M.B., J.J.D., L.H.E., A.C.F., M.K.H., D.J.H., T.W.B.L., C.M., K.N., A.C.O., K.A.P., M.S., P.W.S., J.A.T., S.V. and N.J.W. participated in writing the paper. K.M.B., A.C.E., L.H.E., A.C.F., D.J.H., T.W.B.L., C.M., R.M., N.C.N.-C., K.N., A.C.O., K.A.P., L.O.O., J.A.T., M.v.O., K.V., J.M.J. and J.L.J. participated in developing the analyses.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Climate Change thanks Brett Sanders, Shengli Tao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2.
Supplementary Table 1
Information on the CoSMoS framework of models and data used to support the coastal hazards presented in this study.
Supplementary Table 2
Flood exposure and groundwater exposure totals, summarized by states and combined, with median, maximum and minimum values.
Rights and permissions
About this article
Cite this article
Barnard, P.L., Befus, K.M., Danielson, J.J. et al. Projections of multiple climate-related coastal hazards for the US Southeast Atlantic. Nat. Clim. Chang. 15, 101â109 (2025). https://doi.org/10.1038/s41558-024-02180-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41558-024-02180-2