Skip to main content

Advertisement

Log in

Pupillary Motility: Bringing Neuroscience to the Psychiatry Clinic of the Future

  • Neuro-ophthalmology (A Kawasaki, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Modern pupillometry has expanded the study and utility of pupil responses in many new domains, including psychiatry, particularly for understanding aspects of cognitive and emotional information processing. Here, we review the applications of pupillometry in psychiatry for understanding patients’ information processing styles, predicting treatment, and augmenting function. In the past year pupillometry has been shown to be useful in specifying cognitive/affective occurrences during experimental tasks and informing clinical diagnoses. Such studies demonstrate the potential of pupillary motility to be used in clinical psychiatry much as it has been in neurology for the past century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Wilhelm H. Disorders of the pupil. Handb Clin Neurol. 2011;102:427–66.

    Article  PubMed  Google Scholar 

  2. Lowenfeld IE. The pupil: anatomy, physiology, and clinical applications. Boston: Butterworth Heinemann; 1999.

    Google Scholar 

  3. Hess EH, Polt JH. Pupil size in relation to mental activity during simple problem solving. Science. 1964;143:1190–2.

    Article  CAS  PubMed  Google Scholar 

  4. Hess EH. Pupillometrics: a method of studying mental emotional and sensory processes. In: Greenfield NS, Sternbaum RA, editors. Handbook of psychophysiology. New York: Rineholt, Holt, Winston; 1972. p. 491–531.

    Google Scholar 

  5. Kahneman D, Beatty J. Pupil diameter and load on memory. Science. 1966;154:1583–5.

    Article  CAS  PubMed  Google Scholar 

  6. Beatty J. Task-evoked pupillary responses processing load and the structure of processing resources. Psychol Bull. 1982;91:276–92.

    Article  CAS  PubMed  Google Scholar 

  7. Steinhauer SR, Hakerem G. The pupillary response in cognitive psychophysiology and schizophrenia. Ann N Y Acad Sci. 1992;658:182–204.

    Article  CAS  PubMed  Google Scholar 

  8. Beatty J, Lucero-Wagoner B. The pupillary system. In: Cacioppo JT, Tassinary LG, Berntson GG, editors. Handbook of psychophysiology. New York: Cambridge University Press; 2000. p. 142–62.

    Google Scholar 

  9. Koikegami H, Yoshida K. Pupillary dilation induced by stimulation of amygdaloid nuclei. Folia Pychiatr Neurol Jpn. 1953;7:109–25.

    Google Scholar 

  10. Siegle GJ, Steinhauer SR, Stenger VA, Konecky R, Carter CS. Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. Neuroimage. 2003;20:114–24.

    Article  PubMed  Google Scholar 

  11. Critchley HD, Tang J, Glaser D, Butterworth B, Dolan RJ. Anterior cingulate activity during error and autonomic response. Neuroimage. 2005;27:885–95.

    Article  PubMed  Google Scholar 

  12. Koss MC. Pupillary dilation as an index of central nervous system alpha 2-adrenoceptor activation. J Pharmacol Methods. 1986;15:1–19.

    Article  CAS  PubMed  Google Scholar 

  13. Siegle GJ. Beyond depression commentary: wherefore art thou, depression clinic of tomorrow? Clin Psychol Sci Pract. 2011;18:305–10.

    Article  Google Scholar 

  14. Forgeard MJ, Haigh EA, Beck AT, Davidson RJ, Henn FA, Maier SF et al. Beyond depression: towards a process-based approach to research, diagnosis, and treatment. Clin Psychol (New York). 2011;18:275–99.

  15. Illes J, Lombera S, Rosenberg J, Arnow B. In the mind's eye: provider and patient attitudes on functional brain imaging. J Psychiatr Res. 2008;43:107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Granholm E, Asarbow RF, Sarkin AJ, Dykes KL. Pupillary responses index cognitive resource limitations. Psychophysiology. 1996;33:457–61.

    Article  CAS  PubMed  Google Scholar 

  17. Granholm E, Morris SK, Sarkin AJ, Asarnow RF, Jeste DV. Pupillary responses index overload of working memory resources in schizophrenia. J Abnorm Psychol. 1997;106:458–67.

    Article  CAS  PubMed  Google Scholar 

  18. Granholm E, Verney SO. Pupillary responses and attentional allocation problems on the backward masking task in schizophrenia. Int J Psychophysiol. 2004;52:37–51.

    Article  PubMed  Google Scholar 

  19. Poock GK. Information processing vs pupil diameter. Percept Mot Skills. 1973;37:1000–2.

    Article  CAS  PubMed  Google Scholar 

  20. Janisse MP. Pupil size and affect: a critical review of the literature since 1960. Can Psychol. 1973;14:311–29.

    Google Scholar 

  21. Janisse MP. Pupillary response today: emotion in the eye. Psychol Today. 1974;7:60–3.

    Google Scholar 

  22. Bradley MM, Miccoli L, Escrig MA, Lang PJ. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology. 2008;45:602–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Partala T, Surakka V. Pupil size variation as an indication of affective processing. Int J Hum Comp Stud. 2003;59:185–98.

    Article  Google Scholar 

  24. Mudd S, Conway CG, Schindler DE. The eye as music critic: pupil response and verbal preferences. Studia Psychologica. 1990;32:23–30.

    Google Scholar 

  25. Hess EH, Polt JM. Pupil size as related to interest value of visual stimuli. Science. 1960;132:349–50.

    Article  CAS  PubMed  Google Scholar 

  26. Steinhauer SR, Boller F, Zubin J, Pearlman S. Pupillary dilation to emotional visual stimuli revisited. Psychophysiology. 1983;20:472.

    Google Scholar 

  27. Siegle GJ, Granholm E, Ingram RE, Matt GE. Pupillary and reaction time measures of sustained processing of negative information in depression. Biol Psychiatry. 2001;49:624–36.

    Article  CAS  PubMed  Google Scholar 

  28. Siegle GJ, Steinhauer SR, Carter CS, Ramel W, Thase ME. Do the seconds turn into hours? Relationships between sustained pupil dilation in response to emotional information and self-reported rumination. Cogn Ther Res. 2003;27:365–82.

    Article  Google Scholar 

  29. Silk JS, Dahl RE, Ryan ND, Forbes EE, Axelson DA, Birmaher B et al. Pupillary reactivity to emotional information in child and adolescent depression: links to clinical and ecological measures. Am J Psychiatry. 2007;164:1873–80.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jones NP, Siegle GJ, Muelly ER, Haggerty A, Ghinassi F. Poor performance on cognitive tasks in depression: doing too much or not enough? Cogn Affect Behav Neurosci. 2010;10:129–40.

  31. Anderson BA, Yantis S. Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Atten Percept Psychophys. 2012;74:1644–53.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yechiam E, Telpaz A. To take risk is to face loss: a tonic pupillometry study. Front Psychol. 2011;2:344.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bayer M, Sommer W, Schacht A. Emotional words impact the mind but not the body: evidence from pupillary responses. Psychophysiology. 2011;48:1554–62.

    Article  PubMed  Google Scholar 

  34. van Rijn H, Dalenberg JR, Borst JP, Sprenger SA. Pupil dilation co-varies with memory strength of individual traces in a delayed response paired-associate task. PLoS ONE. 2012;7:e51134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zylberberg A, Oliva M, Sigman M. Pupil dilation: a fingerprint of temporal selection during the "attentional blink". Front Psychol. 2012;3:316.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fiedler S, Glockner A. The dynamics of decision making in risky choice: an eye-tracking analysis. Front Psychol. 2012;3:335.

    Article  PubMed  PubMed Central  Google Scholar 

  37. • Eggert T, Sauter C, Popp R, Zeitlhofer J, Danker-Hopfe H. The Pupillographic SleepinessTest in adults: effect of age, gender, and time of day on pupillometric variables. Am J Hum Biol. 2012;24:820–8. This publication helps to move a vererated measure, the Pupillary Unrest Index, observed to be associated with sleepiness in the 1970s and strongly quantified in the 1990s, into the clinic. This measure has been associated with a variety of psychiatric conditions from those characterized by sleepiness to others characterized by hypo- and hyperarousal, such as Parkinson’s disease. The article formally notes effects of demographic and measurement variables on the assessment of pupillary unrest increasing the chances that clinical will be valid.

  38. Nakayama M, Yamamoto K, Kobayashi F. Estimation of sleepiness using pupillary response and its frequency components. Int J Bioinform Res Appl. 2012;8:342–65.

    Article  CAS  PubMed  Google Scholar 

  39. Niepel G, Bibani RH, Vilisaar J, Langley RW, Bradshaw CM, Szabadi E et al. Association of a deficit of arousal with fatigue in multiple sclerosis: effect of modafinil. Neuropharmacology. 2013;64:380–8.

    Article  CAS  PubMed  Google Scholar 

  40. Graham R, Hoover A, Ceballos NA, Komogortsev O. Body mass index moderates gaze orienting biases and pupil diameter to high and low calorie food images. Appetite. 2011;56:577–86.

    Article  PubMed  Google Scholar 

  41. Oathes DJ, Siegle GJ, Ray WJ. Chronic worry and the temporal dynamics of emotional processing. Emotion. 2011;11:101–14.

    Article  PubMed  Google Scholar 

  42. Steidtmann D, Ingram RE, Siegle GJ. Pupil response to negative emotional information in individuals at-risk for depression. Cogn Emot. 2010;24:480–96.

    Article  Google Scholar 

  43. Giza E, Fotiou D, Bostantjopoulou S, Katsarou Z, Karlovasitou A. Pupil light reflex in Parkinson's disease: evaluation with pupillometry. Int J Neurosci. 2011;121:37–43.

    Article  PubMed  Google Scholar 

  44. Lüdtke H, Wilhelm B, Adler M, Schaeffel F, Wilhelm H. Mathematical procedures in data recording and processing of pupillary fatigue waves. Vision Res. 1998;38:2889–96.

    Article  PubMed  Google Scholar 

  45. Egg R, Högl B, Glatzl S, Beer R, Berger T. Autonomic instability, as measured by pupillary unrest, is not associated with multiple sclerosis fatigue severity. Mult Scler. 2002;8:256–60.

    Article  CAS  PubMed  Google Scholar 

  46. Jain S, Siegle GJ, Gu C, Moore CG, Ivanco LS, Studenski S et al. Pupillary unrest correlates with arousal symptoms and motor signs in Parkinson disease. Mov Disord. 2011;26:1344–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jain S, Siegle GJ, Gu C, Moore CG, Ivanco LS, Jennings JR et al. Autonomic insufficiency in pupillary and cardiovascular systems in Parkinson's disease. Parkinsonism Relat Disord. 2011;17:119–22.

    Article  PubMed  Google Scholar 

  48. Chen JW, Gombart ZJ, Rogers S, Gardiner SK, Cecil S, Bullock RM. Pupillary reactivity as an early indicator of increased intracranial pressure: the introduction of the Neurological Pupil Index. Surg Neurol Int. 2011;2:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuo JR, Lo CJ, Lu CL, Chio CC, Wang CC, Lin KC. Prognostic predictors of outcome in an operative series in traumatic brain injury patients. J Formos Med Assoc. 2011;110:258–64.

    Article  PubMed  Google Scholar 

  50. Matouskova O, Slanar O, Chytil L, Perlik F. Pupillometry in healthy volunteers as a biomarker of tramadol efficacy. J Clin Pharm Ther. 2011;36:513–7.

    Article  CAS  PubMed  Google Scholar 

  51. Beck AT. Cognitive therapy of depression. Guilford clinical psychology and psychotherapy series. New York: Guilford Press; 1979.

    Google Scholar 

  52. Hollon SD, Thase ME, Markowitz JC. Treatment and prevention of depression. Psychol Sci Public Interes. 2002;3:39–77.

    Article  Google Scholar 

  53. Siegle GJ, Carter CS, Thase ME. Use of FMRI to predict recovery from unipolar depression with cognitive behavior therapy. Am J Psychiatry. 2006;163:735–8.

    Article  PubMed  Google Scholar 

  54. McClure EB, Adler A, Monk CS, Cameron J, Smith S, Nelson EE et al. fMRI predictors of treatment outcome in pediatric anxiety disorders. Psychopharmacology (Berl). 2007;191:97–105.

    Article  CAS  Google Scholar 

  55. Fu CH, Williams SC, Cleare AJ, Scott J, Mitterschiffthaler MT, Walsh ND et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiatry. 2008;64:505–12.

    Article  PubMed  Google Scholar 

  56. Siegle GJ, Thompson WK, Collier A, Berman SR, Feldmiller J, Thase ME et al. Toward clinically useful neuroimaging in depression treatment: prognostic utility of subgenual cingulate activity for determining depression outcome in cognitive therapy across studies, scanners, and patient characteristics. Arch Gen Psychiatry. 2012;69:913–24.

    Article  PubMed  PubMed Central  Google Scholar 

  57. • Siegle GJ, Steinhauer SR, Friedman ES, Thompson WS, Thase ME. Remission prognosis for cognitive therapy for recurrent depression using the pupil: utility and neural correlates. Biol Psychiatry. 2011;69:726–33. Here, we advance the idea that pupillometry can play a significant routine role in the psychiatry clinic. This publication is prototypical of what we believe could be a move towards adoption of inexpensive biomarkers of probable treatment response, with assessments of pupil dilation leading the charge.

  58. Siegle GJ, Price RB, Jones N, Ghinassi F, Painter T, Thase ME. You gotta work at it: Pupillary indices of task focus are prognostic for response to a neurocognitive intervention for depression. Clinical Psychological Science, in press.

  59. Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA et al. The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry. 2003;64:1465–75.

    Article  PubMed  Google Scholar 

  60. Godlewska BR, Norbury R, Selvaraj S, Cowen PJ, Harmer CJ. Short-term SSRI treatment normalises amygdala hyperactivity in depressed patients. Psychol Med. 2012;42:2609–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Di Simplicio M, Norbury R, Harmer CJ. Short-term antidepressant administration reduces negative self-referential processing in the medial prefrontal cortex in subjects at risk for depression. Mol Psychiatry. 2012;17:503–10.

    Article  PubMed  CAS  Google Scholar 

  62. Siepmann T, Ziemssen T, Mueck-Weymann M, Kirch W, Siepmann M. The effects of venlafaxine on autonomic functions in healthy volunteers. J Clin Psychopharmacol. 2007;27:687–91.

    Article  CAS  PubMed  Google Scholar 

  63. Larkin GL, Beautrais AL. A preliminary naturalistic study of low-dose ketamine for depression and suicide ideation in the emergency department. Int J Neuropsychopharmacol. 2011;14:1127–31.

    Article  CAS  PubMed  Google Scholar 

  64. Kovalcuka L, Birgele E, Bandere D, Williams DL. The effects of ketamine hydrochloride and diazepam on the intraocular pressure and pupil diameter of the dog's eye. Vet Ophthalmol. 2013;16:29–34.

    Article  CAS  PubMed  Google Scholar 

  65. Kleinloog D, Liem-Moolenaar M, Jacobs G, Klaassen E, de Kam M, Hijman R et al. Does olanzapine inhibit the psychomimetic effects of Delta(9)-tetrahydrocannabinol? J Psychopharmacol. 2012;26:1307–16.

    Article  PubMed  CAS  Google Scholar 

  66. Megarbane B, Alhaddad H, Decleves X. Reduced pupil diameter in volunteers on stable buprenorphine maintenance therapy with telaprevir: a drug-drug interaction involving p-glycoprotein at the blood–brain barrier? Antimicrob Agents Chemother. 2012;56:6070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gabay S, Pertzov Y, Henik A. Orienting of attention, pupil size, and the norepinephrine system. Atten Percept Psychophys. 2011;73:123–9.

    Article  PubMed  Google Scholar 

  68. Jepma M, Nieuwenhuis S. Pupil diameter predicts changes in the exploration-exploitation trade-off: evidence for the adaptive gain theory. J Cogn Neurosci. 2011;23:1587–96.

    Article  PubMed  Google Scholar 

  69. Kuipers JR, Thierry G. N400 amplitude reduction correlates with an increase in pupil size. Front Hum Neurosci. 2011;5:61.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Preuschoff K, Hart BM, Einhauser W. Pupil dilation signals surprise: evidence for noradrenaline's role in decision making. Front Neurosci. 2011;5:115.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brady EU, Kendall PC. Comorbidity of anxiety and depression in children and adolescents. Psychol Bull. 1992;111:244–55.

    Article  CAS  PubMed  Google Scholar 

  72. Kovacs M, Gatsonis C, Paulauskas SL, Richards C. Depressive disorders in childhood. IV. A longitudinal study of comorbidity with and risk for anxiety disorders. Arch Gen Psychiatry. 1989;46:776–82.

    Article  CAS  PubMed  Google Scholar 

  73. Pine DS, Cohen P, Gurley D, Brook J, Ma Y. The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. Arch Gen Psychiatry. 1998;55:56–64.

    Article  CAS  PubMed  Google Scholar 

  74. • Price RB, Siegle GJ, Silk JS, Ladouceur C, McFarland A, Dahl RE et al. Sustained neural alterations in anxious youth performing an attentional bias task: a pupilometry study. Depress Anxiety. 2013;30:22–30. Here, we used pupillometry to show that anxious youth potentially have inflexible or insufficient cognitive control. Anxious youth had sustained pupil dilation (thus we hypothesized sustained cognitive-affective load) following emotional face viewing. These results might help inform clinicians which maladaptive patterns to target in treatment.

  75. • Silk JS, Stroud LR, Siegle GJ, Dahl RE, Lee KH, Nelson EE. Peer acceptance and rejection through the eyes of youth: pupillary, eyetracking and ecological data from the Chatroom Interact task. Soc Cogn Affect Neurosci. 2012;7:93–105. Here, we found that adolescents with increased pupillary reactivity to rejection also felt less socially connected to their peers, suggesting pupillometry as a mode to identify young people who might benefit from interventions that seek to increase social connectedness.

  76. Masten CL, Eisenberger NI, Borofsky LA, Pfeifer JH, McNealy K, Mazziotta JC et al. Neural correlates of social exclusion during adolescence: understanding the distress of peer rejection. Soc Cogn Affect Neurosci. 2009;4:143–57.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jones NP, Siegle GJ, Proud L, Silk JS, Hardy D, Keljo DJ et al. Impact of inflammatory bowel disease and high-dose steroid exposure on pupillary responses to negative information in pediatric depression. Psychosom Med. 2011;73:151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Anderson CJ, Colombo J, Unruh KE. Pupil and salivary indicators of autonomic dysfunction in autism spectrum disorder. Dev Psychobiol. 2012 (epub ahead of print).

  79. Azevedo RT, Macaluso E, Avenanti A, Santangelo V, Cazzato V, Aglioti SM. Their pain is not our pain: Brain and autonomic correlates of empathic resonance with the pain of same and different race individuals. Hum Brain Mapp. 2012 (epub ahead of print).

  80. Hepach R, Vaish A, Tomasello M. Young children are intrinsically motivated to see others helped. Psychol Sci. 2012;23:967–72.

    Article  PubMed  Google Scholar 

  81. • Sepeta L, Tsuchiya N, Davies MS, Sigman M, Bookheimer SY, Dapretto M. Abnormal social reward processing in autism as indexed by pupillary responses to happy faces. J Neurodev Disord. 2012;4:17. This publication is significant in that pupil dilation is used to augment understanding of eye-tracking data in autism. Pupil dilation is acquired in almost every eye-tracking study, but is rarely analyzed. The authors take advantage of the additional data provided to make novel insights about autism. In addition, this article rekindles consideration regarding valence-specific responses in the pupil, which was a hot topic in understanding the utility of pupillary responses in cognition in the 1960s and 1970s. Here, the authors suggest such response patterns may reflect individual differences in cognitive and affective information processing rather than differential valence-dependent mechanisms.

  82. Kuchinke L, Schneider D, Kotz SA, Jacobs AM. Spontaneous but not explicit processing of positive sentences impaired in Asperger's syndrome: pupillometric evidence. Neuropsychologia. 2011;49:331–8.

    Article  PubMed  Google Scholar 

  83. Farzin F, Scaggs F, Hervey C, Berry-Kravis E, Hessl D. Reliability of eye tracking and pupillometry measures in individuals with fragile X syndrome. J Autism Dev Disord. 2011;41:1515–22.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dalton KM, Nacewicz BM, Johnstone T, Schaefer HS, Gernsbacher MA, Goldsmith HH et al. Gaze fixation and the neural circuitry of face processing in autism. Nat Neurosci. 2005;8:519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kylliäinen A, Braeutigam S, Hietanen JK, Swithenby SJ, Bailey AJ. Face–and gaze–sensitive neural responses in children with autism: a magnetoencephalographic study. Eur J Neurosci. 2006;24:2679–90.

    Article  PubMed  Google Scholar 

  86. Joseph RM, Ehrman K, McNally R, Keehn B. Affective response to eye contact and face recognition ability in children with ASD. J Int Neuropsychol Soc. 2008;14:947.

    Article  PubMed  Google Scholar 

  87. Dawson G, Carver L, Meltzoff AN, Panagiotides H, McPartland J, Webb SJ. Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development. Child Dev. 2002;73:700–17.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dawson G, Webb SJ, McPartland J. Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Dev Neuropsychol. 2005;27:403–24.

    Article  PubMed  Google Scholar 

  89. Phillips ML, Bullmore ET, Howard R, Woodruff PW, Wright IC, Williams SC et al. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Res. 1998;83:127–38.

    Article  CAS  PubMed  Google Scholar 

  90. O’Doherty JP, Buchanan TW, Seymour B, Dolan RJ. Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum. Neuron. 2006;49:157.

    Article  PubMed  CAS  Google Scholar 

  91. O'Doherty J, Winston J, Critchley H, Perrett D, Burt DM, Dolan RJ. Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia. 2003;41:147–55.

    Article  CAS  PubMed  Google Scholar 

  92. Kampe KK, Frith CD, Dolan RJ, Frith U. Reward value of attractiveness and gaze. Nature. 2001;413:589.

    Article  CAS  PubMed  Google Scholar 

  93. O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38:329.

    Article  PubMed  Google Scholar 

  94. Jacob RJK. Eye tracking in advanced interface design. In: Woodrow B, Furness TA, III, editors.Virtual environments and advanced interface design. New York–Oxford: Oxford University Press; 1995, pp. 258–88.

  95. • Kashihara K, Ito M, Fukumi M. Automatic system to remove unpleasant images detected by pupil-size changes. Int J Comp Sci Iss. 2012;9:68–73. This publication uses pupil dilation to automatically remove negatively-perceived images for users in a computer interface program. The results suggest that pupillometry could be used as a communication tool for individuals with movement or emotion difficulties.

    Google Scholar 

  96. Gorgolewski KJ, Storkey AJ, Bastin ME, Whittle I, Pernet C. Single subject fMRI test-retest reliability metrics and confounding factors. Neuroimage. 2013;69:231–43.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Simona Graur declares no potential conflicts of interest.

Greg Siegle declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Siegle.

Additional information

This article is part of the Topical Collection on Neuro-ophthalmology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graur, S., Siegle, G. Pupillary Motility: Bringing Neuroscience to the Psychiatry Clinic of the Future. Curr Neurol Neurosci Rep 13, 365 (2013). https://doi.org/10.1007/s11910-013-0365-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0365-0

Keywords

Navigation