Skip to main content
Log in

An analogue of Ramanujan’s sum with respect to regular integers (modr)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

An integer a is said to be regular (modr) if there exists an integer x such that a 2 xa (mod r). In this paper we introduce an analogue of Ramanujan’s sum with respect to regular integers (modr) and show that this analogue possesses properties similar to those of the usual Ramanujan’s sum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkam, O., Osba, E.A.: On the regular elements in Z n . Turk. J. Math. 32, 31–39 (2008)

    MATH  MathSciNet  Google Scholar 

  2. Anderson, D.R., Apostol, T.M.: The evaluation of Ramanujan’s sum and generalizations. Duke Math. J. 20, 211–216 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  3. Apostol, T.M.: Arithmetical properties of generalized Ramanujan sums. Pac. J. Math. 41, 281–293 (1972)

    MATH  MathSciNet  Google Scholar 

  4. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, Berlin (1976)

    MATH  Google Scholar 

  5. Bundschuh, P., Hsu, L.C., Shiue, P.J.-S.: Generalized Möbius inversion-theoretical and computational aspects. Fibonacci Q. 44, 109–116 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Cohen, E.: A class of arithmetical functions. Proc. Natl. Acad. Sci. USA 41, 939–944 (1955)

    Article  MATH  Google Scholar 

  7. Cohen, E.: Arithmetical functions associated with the unitary divisors of an integer. Math. Z. 74, 66–80 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen, E.: Unitary products of arithmetic functions. Acta Arith. 7, 29–38 (1961)

    MATH  MathSciNet  Google Scholar 

  9. Haukkanen, P.: Classical arithmetical identities involving a generalization of Ramanujan’s sum. Ann. Acad. Sci. Fenn., Ser. A 1 Math. Diss. 68, 1–69 (1988)

    MathSciNet  Google Scholar 

  10. Haukkanen, P.: On some set-reduced arithmetical sums. Indian J. Math. 39, 147–158 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Haukkanen, P.: An elementary linear algebraic approach to even functions (mod r). Nieuw Arch. Wiskd., (5) 2, 29–31 (2001)

    MathSciNet  Google Scholar 

  12. Haukkanen, P.: On an inequality related to the Legendre totient function. JIPAM. J. Inequal. Pure Appl. Math. 3, 37 (2002), 6 pp.

    MathSciNet  Google Scholar 

  13. Haukkanen, P.: Discrete Ramanujan–Fourier transform of even functions (modr). Indian J. Math. Math. Sci. 3, 75–80 (2007)

    MathSciNet  Google Scholar 

  14. He, T.-X., Hsu, L.C., Shiue, P.J.-S.: On generalised Möbius inversion formulas. Bull. Aust. Math. Soc. 73, 79–88 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. McCarthy, P.J.: Introduction to Arithmetical Functions. Universitext. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  16. Mednykh, A.D., Nedela, R.: Enumeration of unrooted maps with given genus. J. Comb. Theory, Ser. B 96, 706–729 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Montgomery, H.L., Vaughan, R.C., Multiplicative Number Theory, I.: Classical Theory. Cambridge Studies in Advanced Mathematics, vol. 97. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  18. Ramanujan, S.: On certain trigonometrical sums and their applications in the theory of numbers. Trans. Camb. Philos. Soc. 22, 259–276 (1918)

    Google Scholar 

  19. Rearick, D.: Semi-multiplicative functions. Duke Math. J. 33, 49–53 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rearick, D.: Correlation of semi-multiplicative functions. Duke Math. J. 33, 623–627 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  21. Samadi, S., Ahmad, M.O., Swamy, M.N.S.: Ramanujan sums and discrete Fourier transforms. IEEE Signal Process. Lett. 12, 293–296 (2005)

    Article  Google Scholar 

  22. Sándor, J., Crstici, B.: Handbook of Number Theory II. Kluwer Academic, Dordrecht (2004)

    Book  MATH  Google Scholar 

  23. Schramm, W.: The Fourier transform of functions of the greatest common divisor. Integers 8, #A50 (2008), 7 pp.

    MathSciNet  Google Scholar 

  24. Schwarz, W., Spilker, J.: Arithmetical Functions. London Mathematical Society Lecture Note Series, vol. 184. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  25. Selberg, A.: Remarks on multiplicative functions. In: Number Theory Day. Proc. Conf., Rockefeller Univ., New York, 1976, pp. 232–241. Springer, Berlin (1977)

    Chapter  Google Scholar 

  26. Sivaramakrishnan, R.: Classical Theory of Arithmetic Functions. Monographs and Textbooks in Pure and Applied Mathematics, vol. 126. Marcel Dekker, New York (1986)

    Google Scholar 

  27. Spilker, J.: Eine einheitliche Methode zur Behandlung einer linearen Kongruenz mit Nebenbedingungen. Elem. Math. 51, 107–116 (1996)

    MathSciNet  Google Scholar 

  28. Subbarao, M.V., Harris, V.C.: A new generalization of Ramanujan’s sum. J. Lond. Math. Soc. 41, 595–604 (1966)

    Article  MathSciNet  Google Scholar 

  29. Tóth, L.: Remarks on generalized Ramanujan sums and even functions. Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 20, 233–238 (2004)

    MATH  MathSciNet  Google Scholar 

  30. Tóth, L.: Regular integers (mod n). Annales Univ. Sci. Budapest., Sect. Comp. 29, 263–275 (2008)

    MATH  Google Scholar 

  31. Tóth, L.: A gcd-sum function over regular integers modulo n. J. Integer Seq. 12, 09.2.5 (2009)

    Google Scholar 

  32. Yamasaki, Y.: Arithmetical properties of multiple Ramanujan sums. Ramanujan J. 21, 241–261 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pentti Haukkanen.

Additional information

Financial support from the Magnus Ehrnrooth Foundation is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haukkanen, P., Tóth, L. An analogue of Ramanujan’s sum with respect to regular integers (modr). Ramanujan J 27, 71–88 (2012). https://doi.org/10.1007/s11139-011-9327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-011-9327-9

Keywords

Mathematics Subject Classification (2000)

Navigation