Abstract
An integer a is said to be regular (modr) if there exists an integer x such that a 2 x≡a (mod r). In this paper we introduce an analogue of Ramanujan’s sum with respect to regular integers (modr) and show that this analogue possesses properties similar to those of the usual Ramanujan’s sum.
Similar content being viewed by others
References
Alkam, O., Osba, E.A.: On the regular elements in Z n . Turk. J. Math. 32, 31–39 (2008)
Anderson, D.R., Apostol, T.M.: The evaluation of Ramanujan’s sum and generalizations. Duke Math. J. 20, 211–216 (1953)
Apostol, T.M.: Arithmetical properties of generalized Ramanujan sums. Pac. J. Math. 41, 281–293 (1972)
Apostol, T.M.: Introduction to Analytic Number Theory. Springer, Berlin (1976)
Bundschuh, P., Hsu, L.C., Shiue, P.J.-S.: Generalized Möbius inversion-theoretical and computational aspects. Fibonacci Q. 44, 109–116 (2006)
Cohen, E.: A class of arithmetical functions. Proc. Natl. Acad. Sci. USA 41, 939–944 (1955)
Cohen, E.: Arithmetical functions associated with the unitary divisors of an integer. Math. Z. 74, 66–80 (1960)
Cohen, E.: Unitary products of arithmetic functions. Acta Arith. 7, 29–38 (1961)
Haukkanen, P.: Classical arithmetical identities involving a generalization of Ramanujan’s sum. Ann. Acad. Sci. Fenn., Ser. A 1 Math. Diss. 68, 1–69 (1988)
Haukkanen, P.: On some set-reduced arithmetical sums. Indian J. Math. 39, 147–158 (1997)
Haukkanen, P.: An elementary linear algebraic approach to even functions (mod r). Nieuw Arch. Wiskd., (5) 2, 29–31 (2001)
Haukkanen, P.: On an inequality related to the Legendre totient function. JIPAM. J. Inequal. Pure Appl. Math. 3, 37 (2002), 6 pp.
Haukkanen, P.: Discrete Ramanujan–Fourier transform of even functions (modr). Indian J. Math. Math. Sci. 3, 75–80 (2007)
He, T.-X., Hsu, L.C., Shiue, P.J.-S.: On generalised Möbius inversion formulas. Bull. Aust. Math. Soc. 73, 79–88 (2006)
McCarthy, P.J.: Introduction to Arithmetical Functions. Universitext. Springer, Berlin (1986)
Mednykh, A.D., Nedela, R.: Enumeration of unrooted maps with given genus. J. Comb. Theory, Ser. B 96, 706–729 (2006)
Montgomery, H.L., Vaughan, R.C., Multiplicative Number Theory, I.: Classical Theory. Cambridge Studies in Advanced Mathematics, vol. 97. Cambridge University Press, Cambridge (2007)
Ramanujan, S.: On certain trigonometrical sums and their applications in the theory of numbers. Trans. Camb. Philos. Soc. 22, 259–276 (1918)
Rearick, D.: Semi-multiplicative functions. Duke Math. J. 33, 49–53 (1966)
Rearick, D.: Correlation of semi-multiplicative functions. Duke Math. J. 33, 623–627 (1966)
Samadi, S., Ahmad, M.O., Swamy, M.N.S.: Ramanujan sums and discrete Fourier transforms. IEEE Signal Process. Lett. 12, 293–296 (2005)
Sándor, J., Crstici, B.: Handbook of Number Theory II. Kluwer Academic, Dordrecht (2004)
Schramm, W.: The Fourier transform of functions of the greatest common divisor. Integers 8, #A50 (2008), 7 pp.
Schwarz, W., Spilker, J.: Arithmetical Functions. London Mathematical Society Lecture Note Series, vol. 184. Cambridge University Press, Cambridge (1994)
Selberg, A.: Remarks on multiplicative functions. In: Number Theory Day. Proc. Conf., Rockefeller Univ., New York, 1976, pp. 232–241. Springer, Berlin (1977)
Sivaramakrishnan, R.: Classical Theory of Arithmetic Functions. Monographs and Textbooks in Pure and Applied Mathematics, vol. 126. Marcel Dekker, New York (1986)
Spilker, J.: Eine einheitliche Methode zur Behandlung einer linearen Kongruenz mit Nebenbedingungen. Elem. Math. 51, 107–116 (1996)
Subbarao, M.V., Harris, V.C.: A new generalization of Ramanujan’s sum. J. Lond. Math. Soc. 41, 595–604 (1966)
Tóth, L.: Remarks on generalized Ramanujan sums and even functions. Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 20, 233–238 (2004)
Tóth, L.: Regular integers (mod n). Annales Univ. Sci. Budapest., Sect. Comp. 29, 263–275 (2008)
Tóth, L.: A gcd-sum function over regular integers modulo n. J. Integer Seq. 12, 09.2.5 (2009)
Yamasaki, Y.: Arithmetical properties of multiple Ramanujan sums. Ramanujan J. 21, 241–261 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Financial support from the Magnus Ehrnrooth Foundation is gratefully acknowledged.
Rights and permissions
About this article
Cite this article
Haukkanen, P., Tóth, L. An analogue of Ramanujan’s sum with respect to regular integers (modr). Ramanujan J 27, 71–88 (2012). https://doi.org/10.1007/s11139-011-9327-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-011-9327-9
Keywords
- Ramanujan’s sum
- Regular integer
- Arithmetical convolution
- Even function
- Discrete Fourier transform
- Multiplicative function
- Mean value
- Dirichlet series