Abstract
Purposes
We examined the relationships of ganglion cell complex (GCC) parameters determined on spectral-domain optical coherence tomography (SD-OCT), especially the width of abnormal areas, and its ability to detect various stages of glaucoma.
Methods
OCT parameters of glaucomatous and normal eyes were determined with the RTVue SD-OCT. Widths of abnormal GCC areas marked by either red or yellow on the OCT significance map were quantified with image J software. The relationships between the abnormal GCC area and other GCC parameters [thickness, focal loss volume (FLV), and global loss volume (GLV)] and the peripapillary retinal nerve fiber layer (RNFL) thickness were determined using regression analyses. The potential of using the GCC and RNFL parameters to discriminate between glaucomatous and normal eyes was examined using the area under the curve (AUC) of receiver operating characteristics (ROC).
Results
One hundred and eighteen glaucomatous eyes and 45 normal control eyes were studied. Nonlinear models best described the relationships between abnormal GCC area and other GCC parameters. Scatter plots showed changes in the average thickness of the GCC and RNFL, and the average sizes of the GLV preceded changes of abnormal areas of the GCC. The width of the abnormal areas on the GCC thickness map was comparable with other parameters for diagnosing glaucoma.
Conclusions
OCT thickness parameters appeared to decrease faster than the area parameter at the initial stage of glaucoma. The sizes of abnormal areas of the GCC were the most pertinent parameters for detecting glaucoma.
Similar content being viewed by others
References
Sommer A, Quigley HA, Robin AL, Miller NR, Katz J, Arkell S. Evaluation of nerve fiber layer assessment. Arch Ophthalmol. 1984;102:1766–71.
Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.
Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma. 2011;20:252–9.
Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.
Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99:19–28.
Leung CKS, Chan WM, Yung WH, Ng ACK, Woo J, Tsang MK, et al. Comparison of macular and peripapillary measurement for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112:391–400.
Tan O, Chopra V, Lu ATH, Schuman JS, Ishikawa H, Varma R, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-Domain optical coherence tomography. Ophthalmology. 2009;116:2305–14.
Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.
Arintawati P, Sone T, Akita T, Tanaka J, Kiuchi Y. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma. 2012;. doi:10.1097/IJG.0b013e318259b2e1.
Lee S, Sung KR, Cho JW, Cheon MH, Kang SY, Kook MS. Spectral-domain optical coherence tomography and scanning laser polarimetry in glaucoma diagnosis. Jpn J Ophthalmol. 2010;54:544–9.
Japan Glaucoma Society. Guidelines for glaucoma. 2nd ed. Japan Glaucoma Society: Tokyo; 2006.
Hodapp E PR, Anderson DR. Clinical decisions in glaucoma. St.Louis: C.V. Mosby; 1993.
Budenz DL, Rhee P, Feuer WJ, McSoley J, Johnson CA, Anderson DR. Comparison of glaucomatous visual field defects using standard full threshold and swedish interactive threshold algorithms. Arch Ophthalmol. 2002;120:1136–41.
Rolle T, Briamonte C, Curto D, Grignolo FM. Ganglion cell complex and retinal nerve fiber layer measured by fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma. Clin Ophthalmol. 2011;5:961–9.
Yamashita T, Miki A, Iguchi Y, Kimura K, Maeda F, Kiryu J. Reduced retinal ganglion cell complex thickness in patients with posterior cerebral artery infarction detected using spectral-domain optical coherence tomography. Jpn J Ophthalmol. 2012;56:502–10.
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.
Sung KR, Wollstein G, Schuman JS, Bilonick RA, Ishikawa H, Townsend KA, et al. Scan quality effect on glaucoma discrimination by glaucoma imaging devices. Br J Ophthalmol. 2009;93:1580–4.
Leung CK, Chong KK, Chan WM, Yiu CK, Tso MY, Woo J, et al. Comparative study of retinal nerve fiber layer measurement by Stratus OCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3702–11.
Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002.
Vladusich T, Lucassen MP, Cornelissen FW. Edge integration and the perception of brightness and darkness. J Vis. 2006;6:1126–47.
Goodenough AE, Hart AG, Stafford R. Regression with empirical variable selection: description of a new method and application to ecological datasets. PLoS ONE. 2012;. doi:10.1371/journal.pone.0034338.
Cho JW, Sung KR, Lee S, Yun SC, Kang SY, Choi J, et al. Relationship between visual field sensitivity and ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:6401–7.
Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Starck PC, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol. 2004;138:218–25.
Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, et al. Macular and papillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010;51:1446–52.
Kita Y, Kita R, Nitta A, Nishimuea C, Tomita G. Glaucomatous eye macular ganglion cell complex thickness and its relation to temporal circumpapillary retinal nerve fiber layer thickness. Jpn J Ophthalmol. 2011;55:228–34.
Garas A, Vargha P, Hollo G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010;117:738–46.
Seibold LK, Mandava N, Kahook MY. Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography. Am J Ophthalmol. 2010;150:807–14.
Acknowledgments
Professional medical English editing: This manuscript was edited by Dr. Duco Hamasaki in Florida and Dr. Brian Quinn, editor-in-chief, Japan Medical Communication.
Conflicts of interest
U. Rimayanti, None; M. Akhyar Latief, None; P. Arintawati, None; T. Akita, None; J. Tanaka, None; Y. Kiuchi, None.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Rimayanti, U., Latief, M.A., Arintawati, P. et al. Width of abnormal ganglion cell complex area determined using optical coherence tomography to predict glaucoma. Jpn J Ophthalmol 58, 47–55 (2014). https://doi.org/10.1007/s10384-013-0281-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10384-013-0281-5