Skip to main content

Advertisement

Log in

Width of abnormal ganglion cell complex area determined using optical coherence tomography to predict glaucoma

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purposes

We examined the relationships of ganglion cell complex (GCC) parameters determined on spectral-domain optical coherence tomography (SD-OCT), especially the width of abnormal areas, and its ability to detect various stages of glaucoma.

Methods

OCT parameters of glaucomatous and normal eyes were determined with the RTVue SD-OCT. Widths of abnormal GCC areas marked by either red or yellow on the OCT significance map were quantified with image J software. The relationships between the abnormal GCC area and other GCC parameters [thickness, focal loss volume (FLV), and global loss volume (GLV)] and the peripapillary retinal nerve fiber layer (RNFL) thickness were determined using regression analyses. The potential of using the GCC and RNFL parameters to discriminate between glaucomatous and normal eyes was examined using the area under the curve (AUC) of receiver operating characteristics (ROC).

Results

One hundred and eighteen glaucomatous eyes and 45 normal control eyes were studied. Nonlinear models best described the relationships between abnormal GCC area and other GCC parameters. Scatter plots showed changes in the average thickness of the GCC and RNFL, and the average sizes of the GLV preceded changes of abnormal areas of the GCC. The width of the abnormal areas on the GCC thickness map was comparable with other parameters for diagnosing glaucoma.

Conclusions

OCT thickness parameters appeared to decrease faster than the area parameter at the initial stage of glaucoma. The sizes of abnormal areas of the GCC were the most pertinent parameters for detecting glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sommer A, Quigley HA, Robin AL, Miller NR, Katz J, Arkell S. Evaluation of nerve fiber layer assessment. Arch Ophthalmol. 1984;102:1766–71.

    Article  CAS  PubMed  Google Scholar 

  2. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.

    CAS  PubMed  Google Scholar 

  3. Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma. 2011;20:252–9.

    Article  PubMed  Google Scholar 

  4. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.

    Article  CAS  PubMed  Google Scholar 

  5. Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99:19–28.

    Article  CAS  PubMed  Google Scholar 

  6. Leung CKS, Chan WM, Yung WH, Ng ACK, Woo J, Tsang MK, et al. Comparison of macular and peripapillary measurement for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112:391–400.

    Article  PubMed  Google Scholar 

  7. Tan O, Chopra V, Lu ATH, Schuman JS, Ishikawa H, Varma R, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-Domain optical coherence tomography. Ophthalmology. 2009;116:2305–14.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.

    Article  PubMed  Google Scholar 

  9. Arintawati P, Sone T, Akita T, Tanaka J, Kiuchi Y. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma. 2012;. doi:10.1097/IJG.0b013e318259b2e1.

    Google Scholar 

  10. Lee S, Sung KR, Cho JW, Cheon MH, Kang SY, Kook MS. Spectral-domain optical coherence tomography and scanning laser polarimetry in glaucoma diagnosis. Jpn J Ophthalmol. 2010;54:544–9.

    Article  PubMed  Google Scholar 

  11. Japan Glaucoma Society. Guidelines for glaucoma. 2nd ed. Japan Glaucoma Society: Tokyo; 2006.

    Google Scholar 

  12. Hodapp E PR, Anderson DR. Clinical decisions in glaucoma. St.Louis: C.V. Mosby; 1993.

  13. Budenz DL, Rhee P, Feuer WJ, McSoley J, Johnson CA, Anderson DR. Comparison of glaucomatous visual field defects using standard full threshold and swedish interactive threshold algorithms. Arch Ophthalmol. 2002;120:1136–41.

    Article  PubMed  Google Scholar 

  14. Rolle T, Briamonte C, Curto D, Grignolo FM. Ganglion cell complex and retinal nerve fiber layer measured by fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma. Clin Ophthalmol. 2011;5:961–9.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Yamashita T, Miki A, Iguchi Y, Kimura K, Maeda F, Kiryu J. Reduced retinal ganglion cell complex thickness in patients with posterior cerebral artery infarction detected using spectral-domain optical coherence tomography. Jpn J Ophthalmol. 2012;56:502–10.

    Article  PubMed  Google Scholar 

  16. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  PubMed  Google Scholar 

  17. Sung KR, Wollstein G, Schuman JS, Bilonick RA, Ishikawa H, Townsend KA, et al. Scan quality effect on glaucoma discrimination by glaucoma imaging devices. Br J Ophthalmol. 2009;93:1580–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Leung CK, Chong KK, Chan WM, Yiu CK, Tso MY, Woo J, et al. Comparative study of retinal nerve fiber layer measurement by Stratus OCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3702–11.

    Article  PubMed  Google Scholar 

  19. Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002.

    Google Scholar 

  20. Vladusich T, Lucassen MP, Cornelissen FW. Edge integration and the perception of brightness and darkness. J Vis. 2006;6:1126–47.

    Article  PubMed  Google Scholar 

  21. Goodenough AE, Hart AG, Stafford R. Regression with empirical variable selection: description of a new method and application to ecological datasets. PLoS ONE. 2012;. doi:10.1371/journal.pone.0034338.

    PubMed Central  PubMed  Google Scholar 

  22. Cho JW, Sung KR, Lee S, Yun SC, Kang SY, Choi J, et al. Relationship between visual field sensitivity and ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:6401–7.

    Article  PubMed  Google Scholar 

  23. Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Starck PC, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol. 2004;138:218–25.

    Article  PubMed  Google Scholar 

  24. Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, et al. Macular and papillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010;51:1446–52.

    Article  PubMed  Google Scholar 

  25. Kita Y, Kita R, Nitta A, Nishimuea C, Tomita G. Glaucomatous eye macular ganglion cell complex thickness and its relation to temporal circumpapillary retinal nerve fiber layer thickness. Jpn J Ophthalmol. 2011;55:228–34.

    Article  PubMed  Google Scholar 

  26. Garas A, Vargha P, Hollo G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010;117:738–46.

    Article  PubMed  Google Scholar 

  27. Seibold LK, Mandava N, Kahook MY. Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography. Am J Ophthalmol. 2010;150:807–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Professional medical English editing: This manuscript was edited by Dr. Duco Hamasaki in Florida and Dr. Brian Quinn, editor-in-chief, Japan Medical Communication.

Conflicts of interest

U. Rimayanti, None; M. Akhyar Latief, None; P. Arintawati, None; T. Akita, None; J. Tanaka, None; Y. Kiuchi, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulfah Rimayanti.

About this article

Cite this article

Rimayanti, U., Latief, M.A., Arintawati, P. et al. Width of abnormal ganglion cell complex area determined using optical coherence tomography to predict glaucoma. Jpn J Ophthalmol 58, 47–55 (2014). https://doi.org/10.1007/s10384-013-0281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-013-0281-5

Keywords

Navigation