Skip to main content

Advertisement

Log in

Endogenous estrogen may prevent bone loss in postmenopausal hemodialysis patients throughout life

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Postmenopausal hemodialysis patients are at risk of complications related to renal mineral and bone disorder, and postmenopausal osteoporosis. In 112 postmenopausal hemodialysis patients, free estrogen index was positively correlated with bone mineral density (BMD) Z-score and the annual percent change of BMD in multiple regression analysis. Endogenous estrogen may prevent bone loss in postmenopausal hemodialysis patients throughout life.

Introduction

Women on dialysis are not only at risk of developing mineral and bone disorder, but also suffer from postmenopausal osteoporosis. We assessed the effect of sex hormones on bone metabolism in postmenopausal hemodialysis patients.

Methods

We enrolled 112 postmenopausal hemodialysis patients with a mean age of 68.4 ± 10.4 years. We measured the serum levels of estradiol, testosterone, sex hormone-binding globulin (SHBG), and intact parathyroid hormone (intact-PTH), as well as bone metabolism parameters and radial bone mineral density (BMD). The free estrogen index (FEI) was calculated from the estradiol and SHBG values. After conventional dialysis was performed for 12 months, BMD was measured again and the annual percent change was calculated. Estradiol and SHBG were also measured in 25 postmenopausal women without chronic kidney disease.

Results

Estradiol levels were higher in the hemodialysis patients than in the postmenopausal women without chronic kidney disease. In patients with relatively normal bone turnover (intact-PTH: from 150 to 300 pg/ml), the FEI showed a positive correlation with the BMD Z-score. The annual percent change of BMD showed a positive correlation with the FEI according to multiple regression analysis.

Conclusions

Endogenous estrogen may prevent bone loss in postmenopausal hemodialysis patients throughout life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fontain MA, Albert A, Dubois B et al (2000) Fracture and bone mineral density in hemodialysis patients. Clin Nephrol 54:218–226

    Google Scholar 

  2. Cunningham J, Danese M, Olson K et al (2005) Effects of the calcimimetic cinacalcet HCI on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int 68:1793–1800

    Article  PubMed  CAS  Google Scholar 

  3. Horowitz MC (1993) Cytokines and estrogen in bone: anti-osteoporotic effects. Science 260:626–627

    Article  PubMed  CAS  Google Scholar 

  4. Kitazawa R, Kimble RB, Jl V et al (1994) Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J Clin Invest 94:2397–2406

    Article  PubMed  CAS  Google Scholar 

  5. Mendez-Davila C, Garcia-Moreno C, Turbi C et al (2004) Effects of 17 beta-estradiol, tamoxifen and raloxifene on the protein and mRNA expression of interleukin-6, transforming growth factor-beta1 and insulin-like growth factor-1 in primary human osteoblast cultures. J Endocrinol Investig 27:904–912

    CAS  Google Scholar 

  6. Cummings SR, Browner WS, Bauer D et al (1998) Endogenous hormones and the risk of hip and vertebral fractures among older women. N Engl J Med 339:733–738

    Article  PubMed  CAS  Google Scholar 

  7. Rush H, Neugarten J, Coco M (2000) Women’s health issues in a dialysis population. Clin Nephrol 54:455–462

    PubMed  CAS  Google Scholar 

  8. McKinlay SM, Brambilla DJ, Posner JG (1992) The normal menopause transition. Maturitas 14:103–115

    Article  PubMed  CAS  Google Scholar 

  9. Payne RB, Little AJ, Williams RB et al (1973) Interpretation of serum calcium in patients with abnormal serum proteins. Br Med J 4:643–646

    Article  PubMed  CAS  Google Scholar 

  10. Lambrinoudaki I, Christodoulakos G, Aravantinous L et al (2006) Endogenous sex steroids and bone mineral density in healthy Greek postmenopausal women. J Bone Miner Metab 24:65–71

    Article  PubMed  CAS  Google Scholar 

  11. Selby C (1990) Sex hormone binding globulin: origin, function and clinical significance. Ann Clin Biochem 27:532–541

    PubMed  Google Scholar 

  12. Nakashima A, Yorioka N, Tanji C et al (2003) Bone mineral density may be related to atherosclerosis in hemodialysis patients. Osteoporos Int 14:369–373

    Article  PubMed  CAS  Google Scholar 

  13. Duarte B, Hargis GK, Kukreja SC (1988) Effects of estradiol and progesterone on parathyroid hormone secretion from human parathyroid tissue. J Clin Endocrinol Metab 66:584–587

    Article  PubMed  CAS  Google Scholar 

  14. Naveh-Many T, Almogi G, Livni N et al (1992) Estrogen receptors and biologic response in rat parathyroid tissue and C-cells. J Clin Invest 90:2434–2438

    Article  PubMed  CAS  Google Scholar 

  15. Gennari C, Agnusdei D, Nardi P et al (1990) Estrogen preserves a normal intestinal responsiveness to 1, 25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab 71:1288–1293

    Article  PubMed  CAS  Google Scholar 

  16. McKane WR, Khosla S, Burritt MF et al (1995) Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause—a clinical research center study. J Clin Endocrinol Metab 80:3458–3464

    Article  PubMed  CAS  Google Scholar 

  17. Khosla S, Atkinson EJ, Melton LJ 3rd et al (1997) Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women: a population-based study. J Clin Endocrinol Metab 82:1522–1527

    Article  PubMed  CAS  Google Scholar 

  18. Pacifici R, Rifas L, McCracken R et al (1989) Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release. Proc Natl Acad Sci USA 86:2398–2402

    Article  PubMed  CAS  Google Scholar 

  19. Jilka RL, Hangoc G, Girasole G et al (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    Article  PubMed  CAS  Google Scholar 

  20. Roggia C, Gao Y, Cenci S et al (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 98:13960–13965

    Article  PubMed  CAS  Google Scholar 

  21. Golden SH, Dobs AS, Vaidya D et al (2007) Endogenous sex hormones and glucose tolerance status in postmenopausal women. J Clin Endocrinol Metab 92:1289–1295

    Article  PubMed  CAS  Google Scholar 

  22. Ding EL, Song Y, Manson JE et al (2007) Plasma sex steroid hormones and risk of developing type 2 diabetes in women: a prospective study. Diabetologia 50:2076–2084

    Article  PubMed  CAS  Google Scholar 

  23. Alonso-Magdalena P, Morimoto S, Ripoll C et al (2006) The estrogenic effect of bisphenol A disrupts pancreatic β-cell function in vivo and induces insulin resistance. Environ Health Perspect 114:106–112

    Article  PubMed  CAS  Google Scholar 

  24. Weisinger JR, Gonzalez L, Alvarez H et al (2000) Role of persistent amenorrhea in bone mineral metabolism of young hemodialyzed women. Kidney Int 58:331–335

    Article  PubMed  CAS  Google Scholar 

  25. Holley JL, Schmidt RJ, Bender FH et al (1997) Gynecologic and reproductive issues in women on dialysis. Am J Kidney Dis 29:685–690

    Article  PubMed  CAS  Google Scholar 

  26. Kramer HM, Curhan G, Singh A, HELP Study Group (2003) Hemodialysis and estrogen levels in postmenopausal (HELP) patients: the multicenter HELP study. Am J Kidney Dis 41:1240–1246

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka M, Itoh K, Matsushita K et al (2005) High serum estradiol concentrations in postmenopausal women with end-stage renal disease. Clin Nephrol 64:394–396

    PubMed  CAS  Google Scholar 

  28. Ettinger B, Pressman A, Sklarin P et al (2006) Associations between low levels of serum estradiol, bone density, and fractures among elderly women: The study of osteoporotic fractures. J Clin Endocrinol Metab 91:3791–3797

    Article  PubMed  Google Scholar 

  29. Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative Randomized Controlled Trial. JAMA 288:321–333

    Article  Google Scholar 

  30. Ettinger B, Black DM, Mitlak BH et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. JAMA 282:637–645

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants-in-Aid for kidney failure and hemodialysis research from the Japanese Association of Dialysis Physicians.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nakashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiya, N., Nakashima, A., Takasugi, N. et al. Endogenous estrogen may prevent bone loss in postmenopausal hemodialysis patients throughout life. Osteoporos Int 22, 1573–1579 (2011). https://doi.org/10.1007/s00198-010-1350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1350-y

Keywords

Navigation