Skip to main content

Counting arrangements of bishops

  • Conference paper
  • First Online:
Combinatorial Mathematics IV

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 560))

  • 517 Accesses

Abstract

The problem of the bishops is to determine the number of arrangements of n bishops on an n × n chessboard such that no bishop threatens another and every unoccupied square is threatened by at least one bishop. Two arrangements are considered equivalent if they are isomorphic by way of one of the eight symmetries of the chessboard. The total number of inequivalent solutions to the problem of the bishops is found, as well as the numbers of solutions which have each of the possible automorphism groups. The values up to n=16 are tabulated, and asymptotic formulas are found. A review of analogous results for the problem of the rooks is included, since they are made use of in studying the problem of the bishops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) // springerPlus roll out starts here if (window.localStorage) { window.localStorage.removeItem("springerPlusRollOut") } //springerPlus ends here var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.A. Bender, Asymptotic methods in enumeration, SIAM Review 16(1974), 485–515.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Burnside, Theory of Groups of Finite Order. (Second edition, Cambridge University Press, London, 1911; reprinted by Dover, New York, 1955.)

    MATH  Google Scholar 

  3. S. Chowla, I.N. Herstein and K. Moore, On recursions connected with symmetric groups I, Canadian J. Math. 3 (1951), 328–334.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Harary and E.M. Palmer, Graphical Enumeration. (Academic Press, New York, 1973.)

    MATH  Google Scholar 

  5. W.K. Hayman, A generalisation of Stirling’s formula, J. Reine Angew. Math. 196 (1956), 67–95.

    MathSciNet  MATH  Google Scholar 

  6. M. Kraitchik, Mathematical Recreations. (Second revised edition, W.W. Norton, New York, 1942; reprinted by Dover, New York, 1953.)

    MATH  Google Scholar 

  7. E. Lucas, Théorie des Nombres, V.T. (Gauthier-Villars, Paris, 1891; reprinted by Albert Blanchard, Paris, 1961.)

    Google Scholar 

  8. L. Moser and M. Wyman, On the solution of Xd=1 in symmetric groups, Canadian J. Math. 7 (1955), 159–168.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Louis R. A. Casse Walter D. Wallis

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this paper

Cite this paper

Robinson, R.W. (1976). Counting arrangements of bishops. In: Casse, L.R.A., Wallis, W.D. (eds) Combinatorial Mathematics IV. Lecture Notes in Mathematics, vol 560. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0097382

Download citation

  • DOI: https://doi.org/10.1007/BFb0097382

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08053-4

  • Online ISBN: 978-3-540-37537-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation