Abstract
Using the probabilistic interpretation of Appell polynomials as systems of moments, we show how to define them in the noncommutative case. The method is based on certain infinite-dimensional representations of local Lie groups. For processes, limit theorems play an essential role in the construction. Polynomial matrix representations of convolution semigroups are a principal feature.
Similar content being viewed by others
References
Avram, F., and Taqqu, M. S. (1987). Noncentral limit theorems and Appell polynomials,Ann. Prob. 15 767–775.
Boas, R. P., and Buck, R. C. (1958).Polynomial Expansions of Analytic Functions, Springer-Verlag, Berlin.
Crepel, P., and Raugi, A. (1978). Théorème central limite sur les groupes nilpotents,Ann. Inst. Henri Poincaré XIV, 145–164.
Feinsilver, Ph., and Schott, R. (1989). Operators, stochastic processes, and Lie groups,Lecture Notes in Mathematics, Vol. 1379, pp. 75–85, Springer-Verlag, Berlin.
Feinsilver, Ph., and R. Schott, (1989). An operator approach to processes on Lie groups.Lecture Notes in Mathematics, Vol. 1391, pp. 59–65, Springer-Verlag, Berlin.
Feinsilver, Ph., and Schott, R. (1990). Special functions and infinite-dimensional representations of Lie groups.Math. Z. 203, 173–191.
Feinsilver, Ph., and Schott, R. (1991). Appell systems on Lie groups II: Theory of special functions. Manuscript in preparation.
Giraitis, L., (1985). Central limit theorem for functionals of linear processes.Lietuvos Matematikos Rinkinys XXV, 43–57.
Giraitis, L., and Surgailis, D. (1985). CLT and other limit theorems for functionals of Gaussian processes.Z. Wahr. 70, 191–212.
Giraitis, L., and Surgailis, D. (1986). Multivariate Appell polynomials and the central limit theorem, inDependence in Probability and Statistics, E. Eberlein and M. S. Taqqu (eds.), pp. 21–71, Birkhäuser, Boston.
Hakim-Dowek, M., and Lépingle, D. (1986). L'Exponentielle stochastique des groupes de Lie,Lecture Notes in Mathematics, Vol. 1204, pp. 352–374, Springer-Verlag, Berlin.
Hunt, G. (1956). Semigroups of measures on Lie groups.Trans. A.M.S. 81 264–293.
Karasev, M. V., and Maslov, V. P. (1990). Non-Lie permutation relations.Russian Math. Surveys XXXXV, 51–98.
McKean, H. P. (1969).Stochastic Integrals, Academic Press, New York.
Rainville, E. (1967).Special Functions, MacMillan, New York.
Raugi, A. (1979). Théorème de la limite centrale pour un produit semi-direct d'un groupe de Lie résoluble simplement connexe de type rigide par un groupe compact.Lecture Notes in Mathematics, Vol. 706, pp. 257–324, Springer-Verlag, Berlin.
Siebert, E. (1984). Holomorphic convolution semigroups on topological groups.Lecture Notes in Mathematics, Vol. 1064, pp. 421–449, Springer-Verlag, Berlin.
Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank,Z. Wahr. 50, 53–83.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Feinsilver, P., Schott, R. Appell systems on Lie groups. J Theor Probab 5, 251–281 (1992). https://doi.org/10.1007/BF01046735
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01046735