Abstract
Buhler et al. presented a mathematical theory of toss juggling by regarding a toss pattern as an arithmetic function, where the function must satisfy a condition for the pattern to be valid. In this paper, the theory is formalized in terms of coinduction, reflecting the fact that the validity of toss juggling is related to a property of infinite phenomena. A tactic is implemented for proving the validity of toss patterns in Coq. Additionally, the completeness and soundness of a well-known algorithm for checking the validity is demonstrated. The result exposes a practical aspect of coinductive proofs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only