Domínguez, M., Clampitt, D., Noll, T.: Well-formed scales, maximally even sets and Christoffel Words. In: Klouche, T., Noll, T. (eds.) MCM 2007. Communications in Computer and Information Science, vol. 37, pp. 477–488. Springer, Heidelberg (2009)
Chapter
Google Scholar
Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.: Combinatorics on Words: Christoffel Words and Repetition in Words. American Mathematical Society CRM Monograph Series, vol. 27 (2008)
Google Scholar
Berthé, V., de Luca, A., Reutenauer, C.: On an involution of Christoffel words and Sturmian morphisms. European Journal of Combinatorics 29(2), 535–553 (2008)
Article
MathSciNet
MATH
Google Scholar
Lothaire, M.: Combinatorics on Words. Cambridge Math. Lib. Cambridge Univ. Press, Cambridge (1997)
Book
MATH
Google Scholar
Lothaire, M.: Algebraic Combinatorics on Words. Encylopedia Math. Appl., vol. 90. Cambridge Univ. Press, Cambridge (2002)
Book
MATH
Google Scholar
de Luca, A.: Sturmian words: Structure, combinatorics, and their arithmetics. Theoretical Computer Science 183(1), 45–82 (1997)
Article
MathSciNet
MATH
Google Scholar
Carey, N.: On coherence and sameness, and the evaluation of scale candidacy claims. Journal of Music Theory 46, 1–56 (2002)
Article
Google Scholar
Carey, N.: Coherence and sameness in well-formed and pairwise well-formed scales. Journal of Mathematics and Music 1(2), 79–98 (2007)
Article
MathSciNet
MATH
Google Scholar
Clampitt, D., Noll, T.: Modes, the height-width duality, and Handschin’s Tone Character. Music Theory Online 17(1), (forthcoming),
http://user.cs.tu-berlin.de/%7Enoll/HeightWidthDuality.pdf
Allouche, J.-P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity. Journal of Theoretical Computer Science 292(1), 9–31 (2003)
Article
MathSciNet
MATH
Google Scholar
Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. International Journal of Foundations of Computer Science 15(2), 293–306 (2004)
Article
MathSciNet
MATH
Google Scholar
Droubay, X., Pirillo, G.: Palindromes and Sturmain words. Theoretical Computer Science 223, 73–85 (1999)
Article
MathSciNet
MATH
Google Scholar
Carey, N., Clampitt, D.: Structural properties of musical scales (unpublished manuscript)
Google Scholar
Carey, N., Clampitt, D.: Regions: A theory of tonal spaces in early medieval treatises. Journal of Music Theory 40, 113–147 (1996)
Article
Google Scholar
Carey, N., Clampitt, D.: Self-similar pitch structures, their duals, and rhythmic analogues. Perspectives of New Music 34(2), 62–87 (1996)
Article
Google Scholar
Singler, F.: Zur Dualität zwischen doppelter Periodizität und binärer Intervall-Struktur in der Theorie der Tonregionen. Thesis. Hochschule für Musik und Theater ,, Felix Mendelssohn Bartholdy”, Leipzig (2008)
http://www.qucosa.de/fileadmin/data/qucosa/documents/2536/Dualit%C3%A4t_Tonregionen_Sept09.pdf
Carey, N.: Distribution Modulo 1 and Musical Scales. Ph.D. Dissertation. University of Rochester (1998)
Google Scholar
Slater, N.B.: Gaps and steps for the sequence \(n\theta \bmod{1}\). Proceedings of the Cambridge Philosophical Society 63, 1115–1122 (1967)
Article
MathSciNet
MATH
Google Scholar
Sós, V.T.: On the distribution mod 1 of the sequence nα. Annales Universitatis Scientarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Mathematica 1, 127–134 (1958)
Google Scholar
Carey, N., Clampitt, D.: Aspects of well-formed scales. Music Theory Spectrum 11(2), 187–206 (1989)
Article
Google Scholar