Skip to main content

Some Binary Partition Functions

  • Chapter
Analytic Number Theory

Part of the book series: Progress in Mathematics ((PM,volume 85))

  • 697 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.9 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { if(buybox) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, G., Congruence properties of the m-ary partition function, J. Number Theory, 3 (1971), 104–110. MR 42#3043.

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, G., The Theory of Partitions. Encyc. of Math, and Appl., v. 2, Addison-Wesley, Reading 1976, MR 58#27738.

    Google Scholar 

  3. de Bruijn, N. G., On Mahler’s partition problem, Indag. Math. 10 (1948), 210–220. MR 10, 16d.

    Google Scholar 

  4. Carlitz, L., A problem in partitions related to the Stirling numbers, Riv. Mat. Univ. Parma 5 (1964), 61–75. MR 34#158.

    MathSciNet  MATH  Google Scholar 

  5. Carlitz, L., A problem in partitions related to the Stirling numbers, Bull. Amer. Math. Soc. 70 (1964), 275–278. MR 28#1135.

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlitz, L., Generating functions and partition problems. Pp. 144–169, in Proc. Sympos. Pure Math. VIII, Amer. Math. Soc., Providence, 1965, MR 31 #72.

    Google Scholar 

  7. Churchhouse, R. F., Congruence properties of the binary partition function, Proc. Camb. Phil. Soc. 66 (1969), 371–376. MR 40#1356.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dirdal, G., On restricted m-ary partitions, Math. Scand. 37 (1975), 51–60. MR 52#10582.

    MathSciNet  MATH  Google Scholar 

  9. Dirdal, G., Congruences for m-ary partitions, Math. Scand. 37 (1975), 76–82. MR 52#10583.

    MathSciNet  MATH  Google Scholar 

  10. Euler, L., Introductio in analysin infinitorum. Lausanne, 1748, in Opera Omnia Series Prima Opera Math. vol. 8, B. G. Teubner, Leipzig, 1922.

    Google Scholar 

  11. Euler, L., De partitione numerorum, Nov. com. acad. sci. Petro. 3 (1750/1751), 125–169. In Opera Omnia Series Prima Opera Math, vol. 2, pp. 254–294, B. G. Teubner, Leipzig, 1915.

    Google Scholar 

  12. Gupta, H., Proof of the Churchhouse conjecture concerning binary partitions, Proc. Camb. Phil. Soc. 70 (1971), 53–56. MR 45#4986.

    Article  MATH  Google Scholar 

  13. Gupta, H., A simple proof of the Churchhouse conjecture concerning binary partitions, Ind. J. Pure Appl. Math. 3 (1972), 791–794. MR 48#8377.

    MATH  Google Scholar 

  14. Gupta, H., On m-ary partitions, Proc. Camb. Phil. Soc 71 (1972), 343–345. MR 45#204.

    Article  MATH  Google Scholar 

  15. Gupta, H., A direct proof of the Churchhouse conjecture concerning binary partitions, Ind. J. Math. 18 (1976), 1–5. MR 82b:10013.

    MATH  Google Scholar 

  16. Gupta, H. and P. A. B. Pleasants, Partitions into powers of m, Ind. J. Pure Appl. Math. 10 (1979), 655–694. MR 80f:10014.

    MathSciNet  MATH  Google Scholar 

  17. Hirschhorn, M. D. and J. H. Loxton, Congruence properties of the binary partition function, Proc. Camb. Phil. Soc. 78 (1975), 437–442. MR 52#3045.

    Article  MathSciNet  MATH  Google Scholar 

  18. Klosinski, L. F., G. L. Alexanderson and A. P. Hillman, The William Lowell Putnam Mathematical Competition, Amer. Math. Monthly 91 (1984), 487–495.

    Article  MathSciNet  Google Scholar 

  19. Knuth, D. E., An almost linear recurrence, Fib. Q. 4 (1966), 117–128. MR 33#7317.

    MathSciNet  MATH  Google Scholar 

  20. Lehmer, D. H., On Stern’s diatomic series, Amer. Math. Monthly 36 (1929), 59–67.

    Article  MathSciNet  MATH  Google Scholar 

  21. Lind, D. A., An extension of Stern’s diatomic series, Duke Math. J. 36 (1969), 55–60. MR 30 #6810.

    Article  MathSciNet  MATH  Google Scholar 

  22. Lucas, É., Sur les suites de Farey, Bull. Soc. Math. France (1877–1878), 118–119.

    Google Scholar 

  23. Mahler, K., On a special functional equation, J. London Math. Soc. 15 (1940), 115–123. MR 2, 133e.

    Article  MathSciNet  Google Scholar 

  24. Reznick, B., Digital representations using the greatest integer function, Trans. Amer. Math. Soc. 312 (1989), 355–375. MR 89g:11010.

    Article  MathSciNet  MATH  Google Scholar 

  25. Reznick, B., Congruence properties of the Stem sequence, in preparation.

    Google Scholar 

  26. Reznick, B., Stern measures, in preparation.

    Google Scholar 

  27. de Rham, G., Un peu de mathématiques à propos d’une courbe plane, Elem. Mat. 2 (1947), 73–76, 89–97. MR 9–246.

    Google Scholar 

  28. Rödseth, 0, Some arithmetical properties of m-ary partitions, Proc. Camb. Phil. Soc. 68 (1970), 447–453. MR 41#5319.

    Article  MATH  Google Scholar 

  29. Sloane, N. J. A., A Handbook of Integer Sequences, Academic Press, New York (1973). MR 50#9760.

    MATH  Google Scholar 

  30. Stanley, R. P. Private communication.

    Google Scholar 

  31. Stern, M. A., Ueber eine zahlentheoretische funktion, J. fur Math. 55 (1858), 193–220.

    MATH  Google Scholar 

  32. Tanturri, A, Della partizione dei numeri. Ambi, terni quaterne e cinquine di data somma, Att. delle Sci. di Torino 52 (1916/7), 902–918.

    Google Scholar 

  33. Tanturri, A, Sul numero delle partizioni d’un numero in potenze di 2, Att. delle Sci. di Torino 54 (1918), 97–110.

    Google Scholar 

  34. Tanturri, A., Sul numero delle partizioni d’un numero in potenze di 2, Att. Accad. Naz. Lincei 27 (1918), 399–403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor T. Bateman on the occasion of his retirement

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Reznick, B. (1990). Some Binary Partition Functions. In: Berndt, B.C., Diamond, H.G., Halberstam, H., Hildebrand, A. (eds) Analytic Number Theory. Progress in Mathematics, vol 85. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3464-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3464-7_29

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3481-0

  • Online ISBN: 978-1-4612-3464-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation