Abstract
Infinite Lyndon words have been introduced in [1], where the authors proved a factorization theorem for infinite words: any infinite word can be written as a non increasing product of Lyndon words, finite and/or infinite. After giving a new characterization of infinite Lyndon words, we concentrate on three well known infinite words and give their factorization. We conclude by giving an application to ω-division of infinite words.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. SIROMONEY, L. MATTHEW, V. R. DARE, and K. G. SUBRAMANIAN. Infinite Lyndon Words. Information Processing Letters, 50:101–104, 1994.
C. REUTENAUER. Mots de Lyndon et un théorème de Shirshov. Annales des Sciences Mathématiques du Québec, 10(2):237–245, 1986.
S. VARRICCHIO. Factorizations of Free Monoids and Unavoidable Regularities. Theoretical Computer Science, 73:81–89, 1990.
G. PIRILLO and J. JUSTIN. Shirshov's theorem and ω-permutability of semigroups. Advances in Mathematics, 87(2):151–159, 1991.
J. DEVOLDER, M. LATTEUX, I. LITOVSKY, and L. STAIGER. Codes and Infinite Words. Acta Cybernetica, 11(4):241–256, 1994.
M. LOTHAIRE. Combinatorics on Words. Addison Wesley, 1983.
K. T. CHEN, R. H. FOX, and R. C. LYNDON. Free Differential Calculus, IV — The Quotient Groups of the Lower Central Series. Annals of Mathematics, 68: 81–95, 1958.
J. P. DUVAL. Factorizing Words over an Ordered Alphabet. Journal of Algorithms, 4:363–381, 1983.
M. P. SCHUTZENBERGER. Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilsée dans un problème de mathématiques appliquées. Séminaire P. Dubreuil, Algèbre et théorie des nombres, 1958.
J. BERSTEL and A. De LUCA. Sturmian Words, Lyndon Words and Trees. to appear, 1995.
J. BERATEL. Tracés de droite, fractions continues et morphismes itérées. In Mots — Mélanges offerts à M. P. Schützenberger, pages 298–309. Hermès, 1990.
S. BRLEK. Enumeration of Factors in the Thue-Morse word. Discrete Applied Mathematics, 24(1–3):351–354, April 1987.
K. JACOBS and M. KEANE. 0–1 Sequences of Toeplitz type. Z. Wahr. verw. Geb., 13(2):123–131, 1969.
J. P. ALLOUCHE and R. BACHER. Toeplitz sequences, Towers of Hanoi and Progression Free Sequences of Integers. Enseignement Mathématique, 38: 315–327, 1992.
G. PIRILLO. Ultimately Periodic and n-Divided Words. In A. BARLOTTI, M. DELEST, and R. PINZANI, editors, Proceedings of the Fifth Conference FPSAC, Florence, Italy, pages 351–354, 1993.
X. VIENNOT. Algèbres de Lie libres et monoïdes libres, volume 691 of Lecture Notes in Mathematics. Springer Verlag, 1978.
G. MELANÇON. Combinatorics of Hall Trees and Hall Words. Journal of Combinatorial Theory, Series A, 59(2):285–308, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Melançon, G. (1996). Lyndon factorization of infinite words. In: Puech, C., Reischuk, R. (eds) STACS 96. STACS 1996. Lecture Notes in Computer Science, vol 1046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60922-9_13
Download citation
DOI: https://doi.org/10.1007/3-540-60922-9_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60922-3
Online ISBN: 978-3-540-49723-3
eBook Packages: Springer Book Archive