Skip to main content

Lyndon factorization of infinite words

  • Conference paper
  • First Online:
STACS 96 (STACS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1046))

Included in the following conference series:

Abstract

Infinite Lyndon words have been introduced in [1], where the authors proved a factorization theorem for infinite words: any infinite word can be written as a non increasing product of Lyndon words, finite and/or infinite. After giving a new characterization of infinite Lyndon words, we concentrate on three well known infinite words and give their factorization. We conclude by giving an application to ω-division of infinite words.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. SIROMONEY, L. MATTHEW, V. R. DARE, and K. G. SUBRAMANIAN. Infinite Lyndon Words. Information Processing Letters, 50:101–104, 1994.

    Article  Google Scholar 

  2. C. REUTENAUER. Mots de Lyndon et un théorème de Shirshov. Annales des Sciences Mathématiques du Québec, 10(2):237–245, 1986.

    Google Scholar 

  3. S. VARRICCHIO. Factorizations of Free Monoids and Unavoidable Regularities. Theoretical Computer Science, 73:81–89, 1990.

    Article  Google Scholar 

  4. G. PIRILLO and J. JUSTIN. Shirshov's theorem and ω-permutability of semigroups. Advances in Mathematics, 87(2):151–159, 1991.

    Article  Google Scholar 

  5. J. DEVOLDER, M. LATTEUX, I. LITOVSKY, and L. STAIGER. Codes and Infinite Words. Acta Cybernetica, 11(4):241–256, 1994.

    Google Scholar 

  6. M. LOTHAIRE. Combinatorics on Words. Addison Wesley, 1983.

    Google Scholar 

  7. K. T. CHEN, R. H. FOX, and R. C. LYNDON. Free Differential Calculus, IV — The Quotient Groups of the Lower Central Series. Annals of Mathematics, 68: 81–95, 1958.

    Google Scholar 

  8. J. P. DUVAL. Factorizing Words over an Ordered Alphabet. Journal of Algorithms, 4:363–381, 1983.

    Article  Google Scholar 

  9. M. P. SCHUTZENBERGER. Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilsée dans un problème de mathématiques appliquées. Séminaire P. Dubreuil, Algèbre et théorie des nombres, 1958.

    Google Scholar 

  10. J. BERSTEL and A. De LUCA. Sturmian Words, Lyndon Words and Trees. to appear, 1995.

    Google Scholar 

  11. J. BERATEL. Tracés de droite, fractions continues et morphismes itérées. In Mots — Mélanges offerts à M. P. Schützenberger, pages 298–309. Hermès, 1990.

    Google Scholar 

  12. S. BRLEK. Enumeration of Factors in the Thue-Morse word. Discrete Applied Mathematics, 24(1–3):351–354, April 1987.

    Google Scholar 

  13. K. JACOBS and M. KEANE. 0–1 Sequences of Toeplitz type. Z. Wahr. verw. Geb., 13(2):123–131, 1969.

    Article  Google Scholar 

  14. J. P. ALLOUCHE and R. BACHER. Toeplitz sequences, Towers of Hanoi and Progression Free Sequences of Integers. Enseignement Mathématique, 38: 315–327, 1992.

    Google Scholar 

  15. G. PIRILLO. Ultimately Periodic and n-Divided Words. In A. BARLOTTI, M. DELEST, and R. PINZANI, editors, Proceedings of the Fifth Conference FPSAC, Florence, Italy, pages 351–354, 1993.

    Google Scholar 

  16. X. VIENNOT. Algèbres de Lie libres et monoïdes libres, volume 691 of Lecture Notes in Mathematics. Springer Verlag, 1978.

    Google Scholar 

  17. G. MELANÇON. Combinatorics of Hall Trees and Hall Words. Journal of Combinatorial Theory, Series A, 59(2):285–308, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Puech Rüdiger Reischuk

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melançon, G. (1996). Lyndon factorization of infinite words. In: Puech, C., Reischuk, R. (eds) STACS 96. STACS 1996. Lecture Notes in Computer Science, vol 1046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60922-9_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-60922-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60922-3

  • Online ISBN: 978-3-540-49723-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics