Skip to main content
Log in

Stefan Hildebrandt 1936–2015

  • Historical Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Böhme, R., Tromba, A.: The index theorem for classical minimal surfaces. Ann. Math. 113, 447–499 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brézis, H., Coron, J.M.: Multiple solutions of \(H\)-systems and Rellich’s conjecture. Commun. Pure Appl. Math. 37, 149–187 (1984)

    Article  MATH  Google Scholar 

  3. Courant, R.: Dirichlet’s Principle, Conformal Mappings and Minimal Surfaces. Interscience, New York (1950)

    MATH  Google Scholar 

  4. Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces, 2 vols. Springer, Berlin (1992)

    MATH  Google Scholar 

  5. Dierkes, U., Hildebrandt, S., Lewy, H.: On the analyticity of minimal surfaces at movable boundaries of prescribed length. J. Reine Angew. Math. 379, 100–114 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal Surfaces. Springer, Berlin (2010)

    MATH  Google Scholar 

  7. Dierkes, U., Hildebrandt, S., Tromba, A.: Regularity of Minimal Surfaces. Springer, Berlin (2010)

    MATH  Google Scholar 

  8. Dierkes, U., Hildebrandt, S., Tromba, A.: Global Analysis of Minimal Surfaces. Springer, Berlin (2010)

    MATH  Google Scholar 

  9. Douglas, J.: The mapping theorem of Koebe and the problem of Plateau. J. Math. Phys. 10, 106–130. (1930–1931)

  10. Douglas, J.: Solution of the problem of Plateau. Trans. Am. Math. Soc. 33, 263–321 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giaquinta, M., Hildebrandt, S.: Calculus of Variations, 2 vols. Springer, Berlin (1996)

    MATH  Google Scholar 

  12. Heinz, E., Hildebrandt, S.: Some remarks on minimal surfaces in Riemannian manifolds. Commun. Pure Appl. Math. 23, 371–377 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hildebrandt, S.: Boundary behavior of minimal surfaces. Arch. Ration. Mech. Anal. 35, 47–82 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hildebrandt, S.: On the Plateau problem for surfaces of constant mean curvature. Commun. Pure Appl. Math. 23, 97–114 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hildebrandt, S.: Analysis 1, 2. Springer, Berlin (2002, 2003)

  16. Hildebrandt, S., Jost, J., Widman, K.O.: Harmonic mappings and minimal submanifolds. Invent. Math. 62, 269–298 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hildebrandt, S., Kaul, H., Widman, K.O.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138, 1–16 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hildebrandt, S., Nitsche, J.: Minimal surfaces with free boundaries. Acta Math. 143, 251–272 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hildebrandt, S., Sauvigny, F.: Embeddedness and uniqueness of minimal surfaces solving a partially free boundary problem. J. Reine Angew. Math. 422, 69–89 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Hildebrandt, S., Tromba, A.: Mathematics and Optimal Form. Scientific American Library. Freeman, New York (1985)

    MATH  Google Scholar 

  21. Hildebrandt, S., Tromba, A.: The Parsimonious Universe. Shape and Form in the Natural World. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  22. Hildebrandt, S., von der Mosel, H.: On two-dimensional parametric variational problems. Calc. Var. 9, 249–267 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hildebrandt, S., von der Mosel, H.: On Lichtenstein’s theorem about globally conformal mappings. Calc. Var. 23, 415–424 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jost, J.: Conformal mappings and the Plateau–Douglas problem in Riemannian manifolds. J. Reine Angew. Math. 359, 37–54 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Jost, J.: Bosonic Strings. International Press/Am. Math. Soc., Boston (2001)

    MATH  Google Scholar 

  26. Karcher, H., Pinkall, U., Sterling, I.: New minimal surfaces in \(S^{3}\). J. Differ. Geom. 28, 169–185 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Lawson, H.B.: Compact minimal surfaces in \(S^{3}\). In: Global Analysis. Proc. Symp. Pure Math., vol. 15, pp. 275–282. Am. Math. Soc., Providence (1970)

    Chapter  Google Scholar 

  28. Moser, J.: Laudatio auf Hildebrandt anlässlich des Staudt-Preises. DMV-Mitt. 4, 6 (1994)

    Google Scholar 

  29. Radó, T.: The problem of the least area and the problem of Plateau. Math. Z. 32, 763–796 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  30. Radó, T.: On Plateau’s problem. Ann. Math. 31, 457–469 (1930)

    Article  MATH  Google Scholar 

  31. Steffen, K.: On the nonuniqueness of surfaces with prescribed constant mean curvature spanning a given contour. Arch. Ration. Mech. Anal. 94, 101–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Struwe, M.: Large \(H\)-surfaces via the mountain pass lemma. Math. Ann. 270, 441–459 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tomi, F., Tromba, A.: The index theorem for higher genus minimal surfaces. Mem. Am. Math. Soc. 560, 78 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Jost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jost, J. Stefan Hildebrandt 1936–2015. Jahresber. Dtsch. Math. Ver. 118, 39–49 (2016). https://doi.org/10.1365/s13291-016-0132-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-016-0132-7

Keywords

Navigation