Abstract

We review and update the work on genetic elements, e.g., viruses and plasmids (excluding IS elements and transposons) in the kingdom Crenarchaeota (Thermoproteales and Sulfolobales) and the orders Thermococcales and Thermoplasmales in the kingdom Euryachaeota of the archael domain, including unpublished data from our laboratory. The viruses of Crenarchaeota represent four novel virus families. The Fuselloviridae represented by SSV1 of S. shibatae and relatives in other Sulfolobus strains have the form of a failed spindle. The envelope is highly hydrophobic. The DNA is double-stranded and circular. Members of this group have also been found in Methanococcus and Haloarcula. The Lipothrixviridae (e.g., T TV1 to 3) have the form of flexible filaments. They have a core containing linear double-stranded DNA and DNA-binding proteins which is wrapped into a lipid membrane. The ‘Bacilloviridae’ (e.g., TTV4 and SIRV) are stiff rods lacking this membrane, but also featuring linear double-stranded DNA and DNA-binding proteins. Both virus type carry on both ends structures involved in the attachment to receptors. Both types are represented in Thermoproteus and Sulfolobus. The droplet-formed novel Sulfolobus virus SNDV represents the ‘Guttaviridae’ containing circular double-stranded DNA. Though head and tail viruses distantly resembling T phages or lambdoid phages were seen electronmicroscopically in solfataric water samples, no such virus has so far been isolated. SSV1 is temperate, TTV1 causes lysis after induction, the other viruses found so far exist in carrier states. The hosts of all but TTV1 survive virus production. We discuss the implications of the nature of these viruses for understanding virus evolution. The plasmids found so far range in size from 4.5 kb to about 40 kb. Most of them occur in high copy number, probably due to the way of their detection. Most are cryptic, pNOB8 is conjugative, the widespread pDL10 alleviates in an unknown way autotrophic growth of its host Desulfurolobus by sulfur reduction. The plasmid pTIK4 appears to encode a killer function. pNOB8 has been used as a vector for the transfer of the lac S (β-galactosidase) gene into a mutant of S. solfataricus.

References

[1]

Woese
C.R.
Kandler
O.
Wheelis
M.L.
(

1990
)
Towards a natural system of organisms: Proposal for the domains
5th edn,
87
, In:
Proc. Natl. Adad. Sci. USA
, pp
4576
4579
.
[2]

Stolt
P.
Zillig
W.
(

1994
)
Archaebacterial bacteriophages
5th edn, In:
Encyclopaedia of Virology
, pp
50
58
Academic Press Ltd
.
[3]

Reiter
W.P.
Zillig
W.
Palm
D.
(

1988
)
Archaebacterial viruses
5th ednIn:
Advances in Virus Research
Marmarosch
K.
Purphy
F.A.
Shatking
A.J.
, Eds) Vol.
34
, pp
143
188
Academic Press Inc
,
Orlando, FL
.
[4]

Zillig
W.
Reiter
W.-D.
Palm
P.
Gropp
F.
Neumann
H.
Rettenberger
M.
(

1988
)
Viruses of archaebacteria
In:
The Bacteriophages
Calendar
R.
Conrat
H.Fränkel
Wagner
R.R.
, Eds) 5th edn In The Viruses, Vol.
1
, pp
517
558
Plenum Press
,
New York
a volume of.
[5]

Stolt
P.
Zillig
W.
(

1994
)
Gene regulation in halophage ΦH; more than promoters
Syst. Appl. Microbiol.
,
16
,
591
596
.
[6]

Pfeifer
F.
(

1988
)
Genetics of halobacteria
5th edn (
Rodriguez-Valera
F.
, Ed) Vol.
2
, In:
Halophile Bacteria
, pp
113
115
CRC Press
.
[7]

Erauso
G.
Marsin
S.
Benzouzid-Rollet
N.
Baucher
M.F.
Barbeyron
T.
Zivanovic
Y.
Prieur
D.
Forterre
P.
(

1996
)
Sequence of the plasmid pGT5 from the archaeon Pycoccus abyssi: evidences for rolling-circle replication in a hyperthermophile
J. Bacteriol.
, submitted.
[8]

Neumann
H.
Zillig
W.
(

1990
)
Structural variability in the genome of the Thermoproteus tenax virus TTV1
Mol. Gen. Genet.
,
222
,
435
437
.
[9]

Palm
P.
Schleyer
C.
Grampp
B.
Yeats
S.
McWilliam
P.
Reiter
W.-D.
Zillig
W.
(

1991
)
Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae
Virology
,
185
,
242
250
.
[10]

Zillig
W.
Kletzin
A.
Schleper
C.
Holz
I.
Janekovic
D.
Hain
J.
Lanzendörfer
M.
Kristjasson
J.K.
(

1994
)
Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras
System. Appl. Microbiol.
,
16
,
609
628
.
[11]

Schleper
C.
Holz
I.
Janekovic
D.
Murphy
J.
Zillig
W.
(

1995
)
A multicopy plasmid of the extremely thermophilic arcaeon Sulfolobus effects its transfer to recipients by mating
J. Bacteriol.
,
177
,
4417
4426
.
[12]

Langer
D.
Hain
J.
Thuriaux
P.
Zillig
W.
(

1995
)
Transcription in Arcaea: similarity to that in Eucarya
5th edn,
92
, In:
Proc. Natl. Acad. Sci. USA
, pp
5768
5772
.
[13]

Gogarten
J.P.
Kibak
H.
Dittrich
P.
Taiz
P.
Bowman
E.J.
Manolson
M.F.
Poole
P.J.
Data
T.
Oshima
T.
Konishi
J.
Denca
K.
Yoshida
M.
(

1989
)
Evolutionary relationship of archaebacteria, eubacteria and eukaryotes inferred from phylogentic trees of duplicated genes
5th edn,
86
, In:
Proc. Natl. Acad. Sci. USA
, pp
9355
9359
.
[14]

Iwabe
N.
Kuma
K.
Hasegawa
M.
Osawa
S.
Miyata
T.
(

1989
)
Evolution of RNA polymerases and branching patterns of the three major groups of archaebacteria
J. Mol. Evol.
,
32
,
70
78
.
[15]

Wood
A.G.
Whitman
W.B.
Konisky
J.
(

1989
)
Isolation and characterization of an archaebacterial virus-like particle from Methanococcus voltae A3
J. Bacteriol.
,
171
,
93
98
.
[16]

Rettenberger
M.
(

1990
)
Das Virus TTV1 des extrem thermophilen Schwefel-Archaebakteriums Thermoproteus tenax: Zusammensetzung und Struktur
Diss. LMU Munich
,
[17]

Janekovic
D.
Wunderl
S.
Holz
I.
Zillig
W.
Gierl
A.
Neumann
H.
(

1983
)
TTV1, TTV2 and TTV3, a family of viruses fo the extremely thermophilic, anaerobic, sulfur reducing archaebacterium Thermoproteus tenax
Mol. Gen. Genet.
,
192
,
39
45
.
[18]

Reiter
W.-D.
Palm
P.
Yeats
S.
(

1989
)
Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements
Nucleic Acids Res.
,
17
,
1907
1914
.
[19]

Muskhelishvili
G.
Palm
P.
Zillig
W.
(

1993
)
SSV1-encoded site-specific recombination system in Sulfolobus shibatae
Mol. Gen. Genet.
,
237
,
334
342
.
[20]

Schleper
C.
Kubo
K.
Zillig
W.
(

1992
)
The particle SSV1 from the extremely thermophilic arcaeon Sulfolobus is a virus: Demonstration of inectivity and of transfection with viral DNA
5th edn,
89
, In:
Proc. Natl. Acad. Sci. USA
, pp
7645
7649
.
[21]

Campbell
A.
(

1988
)
Phage evolution and speciation
In:
The Bacteriophages
Calendar
R.
Conrat
H.Fränkel
Wagner
R.R.
, Eds) 5th edn In The Viruses, Vol.
1
, pp
1
14
Plenum Press
,
New York
a volume of.
[22]

Zillig
W.
Yeats
S.
Holz
I.
Böck
A.
Gropp
E.
Rettenberger
M.
Lutz
S.
(

1985
)
Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens
Nature
,
313
,
789
791
.
[23]

Mevarech
M.
Werczberger
R.
(

1985
)
Genetic transfer in Halobacterium volcanii
J. Bacteriol.
,
162
,
461
462
.
[24]

Keeling
P.J.
Klenk
H.-P.
Singh
R.K.
Feeley
O.
Schleper
C.
Zillig
W.
Doolittle
W.F.
Sensen
C.W.
(

1996
)
Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1
Plasmid
, in press.
[25]

Schleper
C.
Puehler
G.
Holz
I.
Gambacorta
A.
Janekovic
D.
Santarius
U.
Klenk
H.-P.
Zillig
W.
(

1995
)
Picrophilus Gen. Nov. Fam. Nov.: A novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH Zero
J. Bacteriol.
,
177
,
7050
7059
.
[26]

Yasuda
M.
Yamagishi
A.
Oshima
T.
(

1995
)
The plasmids found in isolates of the acidothermophilic archaebacterium Thermoplasma acidophilum
FEMS Microbiol. Lett.
,
128
,
157
161
.
[27]

Elferink
M.G.L.
Schleper
C.
Zillig
W.
(

1996
)
Transformation of the extremely thermoacidophilic archaeon Sulfolobus solfatiricus via a self-spreading vector
FEMS Microbiol. Lett.
,
137
,
31
35
.
[28]

Aagaard
C.
Leviev
I.
Aravalli
R.N.
Forterre
P.
Prieur
D.
Garret
R.A.
(

1996
)
General vectors for archael hyperthermophiles: Strategies based on a mobile intron and a plasmid
FEMS Microbiol. Rev.
,
18
,
93
104
.
This content is only available as a PDF.