Key Points
-
The Archaea form the third domain of life alongside the other two domains, the Bacteria and Eukarya. Most cultivated autotrophic archaea live under conditions resembling the conditions of early life (no oxygen, high temperature and purely inorganic substrates), and their autotrophic pathways can serve as models for an ancestral metabolism.
-
None of the autotrophic archaea seems to use the Calvin cycle for CO2 fixation. Instead, they use three different CO2 fixation mechanisms to generate acetyl-coenzyme A (acetyl-CoA), from which the biosynthesis of building blocks can start.
-
The reductive acetyl-CoA pathway function in Euryarchaeota, notably in methanogens, and has the lowest energetic costs among the autotrophic CO2 fixation pathways. However, the demanding requirements for metals, cofactors, anaerobiosis and substrates with low reducing potential restrict this pathway to a limited set of anoxic niches.
-
Two recently discovered cycles function in Crenarchaeota, the dicarboxylateâhydroxybutyrate cycle and the hydroxypropionateâhydroxybutyrate cycle. They have in common the synthesis of succinyl-CoA from acetyl-CoA and two inorganic carbons, although this is accomplished in different ways and using different carboxylases. However, the regeneration of acetyl-CoA, the primary CO2 acceptor, from succinyl-CoA is similar in both pathways.
-
The oxygen-sensitive dicarboxylateâhydroxybutyrate cycle is restricted to the anaerobic Thermoproteales and Desulfurococcales, whereas the oxygen-insensitive hydroxypropionateâhydroxybutyrate cycle is restricted to the mostly aerobic Sulfolobales and possibly marine Crenarchaeota. The two lifestyles presuppose different electron donors with different redox potentials and different oxygen sensitivity of cofactors and enzymes.
-
The distribution of an autotrophic pathway in bacteria and archaea depends on both the genetic predisposition (phylogeny) of the organisms and the constraints of their occupied niches (ecology). The main external factors are the presence of oxygen in the environment, but also the availability of trace metals and C1 compounds. The energy demand of the autotrophic pathways is decisive under energy limitation and caused mainly by the costs for synthesizing autotrophy-related auxiliary enzymes. Further determinants are the main metabolic fluxes in an organism, the usage of CO2 or HCO3â by the carboxylases of the pathway and the possibility of co-assimilating traces of organic compounds present in the environment.
-
According to the 'metabolism first' theory, life started in a hydrothermal vent setting in the Hadean ocean with catalytic metal sulphide surfaces or compartments. The structural (and catalytic) similarity between the minerals themselves and the catalytic metal or FeâS-containing centres of the enzymes or cofactors in the acetyl-CoA pathway suggests that minerals catalysed a primitive acetyl-CoA pathway. The unique features of this pathway indeed indicate that it might be close to an ancestral autotrophic carbon fixation mechanism.
-
Recently a highly conserved, heat-stabile and bifunctional fructose 1,6-bisphosphate aldolaseâphosphatase was identified in archaea and deep-branching lineages of bacteria. This enzyme is regarded as the pace-making ancestral gluconeogenic enzyme. The finding supports the idea that in evolution gluconeogenesis preceded glycolysis. The distribution pattern of this enzyme, its phylogenetic tree and the unidirectional catalysis lend further support to the theory of a chemolithoautotrophic origin of life.
Abstract
The acquisition of cellular carbon from inorganic carbon is a prerequisite for life and marked the transition from the inorganic to the organic world. Recent theories of the origins of life assume that chemoevolution took place in a hot volcanic flow setting through a transition metal-catalysed, autocatalytic carbon fixation cycle. Many archaea live in volcanic habitats under such constraints, in high temperatures with only inorganic substances and often under anoxic conditions. In this Review, we describe the diverse carbon fixation mechanisms that are found in archaea. These reactions differ fundamentally from those of the well-known Calvin cycle, and their distribution mirrors the phylogenetic positions of the archaeal lineages and the needs of the ecological niches that they occupy.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fnrmicro2365/MediaObjects/41579_2010_Article_BFnrmicro2365_Fig1_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fnrmicro2365/MediaObjects/41579_2010_Article_BFnrmicro2365_Fig2_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fnrmicro2365/MediaObjects/41579_2010_Article_BFnrmicro2365_Fig3_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fnrmicro2365/MediaObjects/41579_2010_Article_BFnrmicro2365_Fig4_HTML.jpg)
Similar content being viewed by others
References
Garrity, G. M. & Holt, J. G. Bergey's Manual of Systematic Bacteriology, 2nd ed., vol. 1 (eds Boone, D. R., Castenholz, R. W. & Garrity, G. M.) 119â166 (Springer, New York, 2001).
Stetter, K. O. History of discovery of the first hyperthermophiles. Extremophiles 10, 357â362 (2006).
Sapra, R., Bagramyan, K. & Adams, M. W. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc. Natl Acad. Sci. USA 100, 7545â7550 (2003).
Hedderich, R. & Forzi, L. Energy-converting [NiFe] hydrogenases: more than just H2 activation. J. Mol. Microbiol. Biotechnol. 10, 92â104 (2005).
Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Rev, Microbiol. 6, 579â591 (2008).
Taylor, G. T., Kelly, D. P. & Pirt, S. J. in Microbial Production and Utilization of Gases (eds Schlegel, H. G., Gottschalk, G. & Pfennig, N.) 173â180 (E. Goltze, K. G., Göttingen, 1976).
Ljungdahl, L. G. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol. 40, 415â450 (1986).
Wood, H. G. Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 5, 156â163 (1991).
Drake, H. L., Göβner, A. S. & Daniel, S. L. Old acetogens, new light. Ann. N. Y. Acad. Sci. 1125, 100â128 (2008).
Ragsdale, S. W. Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann. N. Y. Acad. Sci. 1125, 129â136 (2008).
Vorholt, J. A., Kunow, J., Stetter, K. O. & Thauer, R. K. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch. Microbiol. 163, 112â118 (1995).
Vorholt, J. A., Hafenbradl, D., Stetter, K. O. & Thauer, R. K. Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Arch. Microbiol. 167, 19â23 (1997).
Huber, H. et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic archaeum Ignicoccus hospitalis. Proc. Natl Acad. Sci. USA 105, 7851â7856 (2008). Reports the discovery of a dicarboxylateâhydroxybutyrate cycle in the archaeal order Desulfurococcales.
Ramos-Vera, W. H., Berg, I. A. & Fuchs, G. Autotrophic carbon dioxide assimilation in Thermoproteales revisited. J. Bacteriol. 191, 4286â4297 (2009).
Berg, I. A., Ramos-Vera, W. H., Petri, A., Huber, H. & Fuchs, G. Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota. Microbiology 156, 256â269 (2010).
Huber, H., Huber, R. & Stetter, K. O. in The Prokaryotes, 3rd ed., vol. 3 (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.), 10â22 (Springer, New York, 2006).
Huber, H. & Stetter, K. O. in The Prokaryotes, 3rd ed., vol. 3 (eds. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.), 52â68 (Springer, New York, 2006).
Patel, H. M., Kraszewski, J. L. & Mukhopadhyay, B. The phosphoenolpyruvate carboxylase from Methanothermobacter thermoautotrophicus has a novel structure. J. Bacteriol. 186, 5129â5137 (2004).
Ettema, T. J. G. et al. Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism. J. Bacteriol. 186, 7754â7762 (2004).
Strauss, G., Eisenreich, W., Bacher, A. & Fuchs, G. 13C-NMR study of autotrophic CO2 fixation pathways in the sulphur-reducing archaebacterium Thermoproteus neutrophilus and in the phototrophic eubacterium Chloroflexus aurantiacus. Eur. J. Biochem. 205, 853â866 (1992).
Buckel, W. & Golding, G. T. Radical enzymes in anaerobes. Annu. Rev. Microbiol. 60, 27â49 (2006).
Martins, B. M., Dobbek, H., Cinkaya, I., Buckel, W. & Messerschmidt, A. Crystal structure of 4-hydroxybutyryl-CoA dehydratase: radical catalysis involving a [4Fe-4S] cluster and flavin. Proc. Natl Acad. Sci. USA 101, 15645â15649 (2004).
Ishii, M. et al. Autotrophic carbon dioxide fixation in Acidianus brierleyi. Arch. Microbiol. 166, 368â371 (1997). First report of the presence of a modified 3-hydroxypropionate cycle in Archaea.
Menendez, C. et al. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J. Bacteriol. 181, 1088â1098 (1999).
Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318, 1782â1786 (2007). Reports the discovery of a hydroxypropionateâhydroxybutyrate cycle in Sulfolobales.
Huber, H. & Prangishvili, D. in The Prokaryotes, 3rd ed., vol. 3 (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.), 23â51 (Springer, New York, 2006).
Auernik, K. S., Cooper, C. R. & Kelly, R. M. Life in hot acid: pathway analyses in extremely thermoacidophilic archaea. Curr. Opin. Biotechnol. 19, 445â453 (2008).
Hallam, S. J. et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol. 4, e95 (2006).
Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507â510 (2001).
Norris, P., Nixon, A. & Hart, A. Microbiology of Extreme Environments and its Potential for Biotechnology (eds Da Costa, M. S., Duarte, J. C. & Williams, R. A. D.) 24â43 (Elsevier, London, 1989). First report on the presence of an acetyl-CoA carboxylase in Archaea.
Burton, N. P., Williams, T. D. & Norris, P. R. Carboxylase genes in Sulfolobus metallicus. Arch. Microbiol. 172, 349â353 (1999).
Hügler, M., Krieger, R. S., Jahn, M. & Fuchs, G. Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation. Eur. J. Biochem. 270, 736â744 (2003).
Chuakrut, S., Arai, H., Ishii, M. & Igarashi, Y. Characterization of a bifunctional archaeal acyl coenzyme A carboxylase. J. Bacteriol. 185, 938â947 (2003).
Alber, B. et al. Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J. Bacteriol. 188, 8551â8559 (2006).
Kockelkorn, D. & Fuchs, G. Malonic semialdehyde reductase, succinic semialdehyde reductase, and succinyl-coenzyme A reductase from Metallosphaera sedula: enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in Sulfolobales. J. Bacteriol. 191, 6352â6362 (2009).
Alber, B. E., Kung, J. W. & Fuchs, G. 3-Hydroxypropionyl-coenzyme A synthetase from Metallosphaera sedula, an enzyme involved in the autotrophic CO2 fixation. J. Bacteriol. 190, 1383â1389 (2008).
Teufel, R., Kung, J. W., Kockelkorn, D., Alber, B. E. & Fuchs, G. 3-Hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in Sulfolobales. J. Bacteriol. 191, 4572â4581 (2009).
Holo, H. Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch. Microbiol. 151, 252â256 (1989). First hint of the role of 3-hydroxypropionate in autotrophic carbon fixation.
Strauss, G. & Fuchs, G. Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur. J. Biochem. 215, 633â643 (1993).
Herter, S., Fuchs, G., Bacher, A. & Eisenreich, W. A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. J. Biol. Chem. 277, 20277â20283 (2002).
Alber, B. E. & Fuchs, G. Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Biol. Chem. 277, 12137â12143 (2002).
Hügler, M., Menendez, C., Schägger, H. & Fuchs, G. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Bacteriol. 184, 2404â2410 (2002).
Zarzycki, J., Brecht, V., Müller, M. & Fuchs, G. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl Acad. Sci. USA 106, 21317â21322 (2009). Shows the final steps of the 3-hydroxypropionate bicycle.
Eyzaguirre, J., Jansen, K. & Fuchs, G. Phosphoenolpyruvate synthetase in Methanobacterium thermoautotrophicum. Arch. Microbiol. 132, 67â74 (1982).
Tjaden, B., Plagens, A., Dörr, C., Siebers, B. & Hensel, R. Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Mol. Microbiol. 60, 287â298 (2006).
Fuchs, G., Winter, H., Steiner, I. & Stupperich, E. Enzymes of gluconeogenesis in the autotroph Methanobacterium thermoautotrophicum. Arch. Microbiol. 136, 160â162 (1983).
Jahn, U., Huber, H., Eisenreich, W., Hügler, M. & Fuchs, G. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. J. Bacteriol. 189, 4108â4119 (2007).
Schäfer, S., Barkowski, C. & Fuchs, G. Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus. Arch. Microbiol. 146, 301â308 (1986).
Lorentzen, E., Siebers, B., Hensel, R. & Pohl, E. Mechanism of the Schiff base forming fructose-1, 6-bisphosphate aldolase: structural analysis of reaction intermediates. Biochemistry 44, 4222â4229 (2005).
Rashid, N. et al. A novel candidate for the true fructose-1,6-bisphosphatase in archaea. J. Biol. Chem. 277, 30649â30655 (2002).
Say, R. S. & Fuchs, G. Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464, 1077â1081 (2010) Discovery of the bifunctional FBP aldolaseâphosphatase.
Van der Oost, J. & Siebers, B. in Archaea: Evolution, Physiology and Molecular Biology (eds Garrett, R. A. & Klenk, H.-P.) 247â259 (Blackwell, Malden, Massachusetts, 2007).
Siebers, B. & Schönheit, P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr. Opin. Microbiol. 8, 695â705 (2005).
Ronimus, R. S. & Morgan, H. W. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Archaea 1, 199â221 (2003).
Soderberg, T. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes. Archaea 1, 347â352 (2005).
Grochowski, L. L., Xu, H. & White, R. H. Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway. J. Bacteriol. 187, 7382â7389 (2005).
Orita, I. et al. The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. J. Bacteriol. 188, 4698â4704 (2006).
Kato, N., Yurimoto, H. & Thauer, R. K. The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci. Biotechnol. Biochem. 70, 10â21 (2006).
Grochowski, L. L. & White, R. H. Promiscuous anaerobes: new and unconvensional metabolism in methanogenic Archaea. Ann. N. Y. Acad. Sci. 1125, 190â214 (2008).
Auernik, K. S., Maezato, Y., Blum, P. H. & Kelly, R. M. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl. Environ. Microbiol. 74, 682â692 (2008).
Podar, M. et al. A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol. 9, R158 (2008).
Auernik, K. S. & Kelly, R. M. Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by heterotrophy, autotrophy and mixotrophy transcriptomes. Appl. Environ. Microbiol. 76, 2268â2672 (2010).
Zaparty, M. et al. DNA microarray analysis of central carbohydrate metabolism: glycolytic/gluconeogenic carbon switch in the hyperthermophilic crenarchaeum Thermoproteus tenax. J. Bacteriol. 190, 2231â2238 (2008).
Chong, P. K., Burja, A. M., Radianingtyas, H., Fazeli, A. & Wright, P. C. Proteome and transcriptional analysis of ethanol-grown Sulfolobus solfataricus P2 reveals ADH2, a potential alcohol dehydrogenase. J. Proteome Res. 6, 3985â3994 (2007).
DeLong, E. F. & Karl, D. M. Genomic perspectives in microbial oceanography. Nature 437, 336â342 (2005).
Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007).
Schleper, C., Jurgens, G. & Jonuscheit, M. Genomic studies of uncultivated archaea. Nature Rev. Microbiol. 3, 479â488 (2005).
Allen, E. E. et al. Genome dynamics in a natural archaeal population. Proc. Natl Acad. Sci. USA 104, 1883â1888 (2007).
Ferrer, M., Golyshina, O. V., Beloqui, A., Golyshin, P. N. & Timmis, K. N. The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature 445, 91â94 (2007).
Hallam, S. J. et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc. Natl Acad. Sci. USA 103, 18296â18301 (2006).
Hu, Y. & Holden, J. F. Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate. J. Bacteriol. 188, 4350â4355 (2006).
Tabita, F. R. et al. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol. Mol. Biol. Rev. 71, 576â599 (2008). Excellent review concerning the evolution of RubisCO and RLPs proposing their archaeal origins.
Ashida, H. et al. RuBisCO-like proteins as the enolase enzyme in the methionine salvage pathway: functional and evolutionary relationships between RuBisCO-like proteins and photosynthetic RuBisCO. J. Exp. Bot. 59, 1543â1554 (2008).
Imker, H. J., Singh, J., Warlick, B. P., Tabita, F. R. & Gerlt, J. A. Mechanistic diversity in the RuBisCO superfamily: a novel isomerization reaction catalyzed by the RuBisCO-like protein from Rhosdospirillum rubrum. Biochemistry 47, 11171â11173 (2008).
Maeda, N., Kanai, T., Atomi, H. & Imanaka, T. The unique pentagonal structure of an archaeal RuBisCO is essential for its high thermostability. J. Biol. Chem. 277, 31656â31662 (2002).
Finn, M. W. & Tabita, F. R. Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea. J. Bacteriol. 185, 3049â3059 (2003).
Finn, M. W. & Tabita, F. R. Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic Archaea. J. Bacteriol. 186, 6360â6366 (2004).
Kreel, N. E. & Tabita, F. R. Substitutions at methionine 295 of Archaeoglobus fulgidus ribulose-1,5-bisphosphate carboxylase/oxygenase affect oxygen binding and CO2/O2 specificity. J. Biol. Chem. 282, 1341â1351 (2007).
Sato, T., Atomi, H. & Imanaka, T. Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Science 315, 1003â1006 (2007).
Mueller-Cajar, O. & Badger, M. R. New roads lead to RuBiscO in Archaebacteria. BioEssays 29, 722â724 (2007).
Reysenbach, A. L. & Flores, G. E. Electron microscopy encounters with unusual thermophiles helps direct genomic analysis of Aciduliprofundum boonei. Geobiology 6, 331â336 (2008).
Klenk, H.P. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364â370 (1997).
Fuchs, G. in Biology of Autotrophic Bacteria (ed. Schlegel, H. G.) 365â382 (Science Tech., Madison, Wisconsin, 1989).
Wächtershäuser, G. Evolution of the first metabolic cycles. Proc. Natl Acad. Sci. USA 87, 200â204 (1990).
Russell, M. J. & Martin, W. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29, 358â363 (2004). Detailed discussion of the idea that acetyl-CoA pathway is an initial biochemical route.
Makarova, K. S., Sorokin, A. V., Novichkov, P. S., Wolf, Y. I. & Koonin, E. V. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol. Direct 2, 33 (2007).
Fuchs, G., Stupperich, E. & Thauer, R. K. Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch. Microbiol. 117, 61â66 (1978).
Ragsdale, S. W. Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem. Rev. 103, 2333â2346 (2003).
Wächtershäuser, G. On the chemistry and evolution of the pioneer organism. Chem. Biodivers. 4, 584â602 (2007). The last update of Wächtershäuser's ironâsulphur world' theory of the chemolithoautotrophic origin of life.
Wächtershäuser, G. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452â484 (1988). Discusses the basic concept of surface metabolism.
Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nature Rev. Microbiol. 6, 805â814 (2008).
Huber, C. & Wächtershäuser, G. Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276, 245â247 (1997).
Eschenmoser, A. Vitamin B12: experiments concerning the origin of its molecular structure. Angew. Chem. Int. Ed. Engl. 27, 5â39 (1988).
Schauder, R., Preuβ, A., Jetten, M. & Fuchs, G. Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch. Microbiol. 151, 84â89 (1989).
Thauer, R. K., Möller-Zinkhan, D. & Spormann, A. M. Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43, 43â67 (1989).
Hattori, S., Galushko, A. S., Kamagata, Y. & Schink, B. Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J. Bacteriol. 187, 3471â3476 (2005).
Cody, G. D. et al. Geochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid, H2O-(±FeS)-(±NiS). Geochim. Cosmochim. Acta 65, 3557â3576 (2001).
Smith, E. & Morowitz, H. J. Universality in intermediary metabolism. Proc. Natl Acad. Sci. USA 101, 13168â13173 (2004).
Eschenmoser, A. The search for the chemistry of life. Tetrahedron 63, 12821â12844 (2007).
Kummer, C. Der Glaube der Christen. Ein ökumenisches Handbuch (eds Biser, E., Hahn, F. & Langer, M.) 25â44 (Pattloch Verlag, Munich, 1999).
Dagan, T., Artzy-Randrup, Y. & Martin, W. Modular networks and cumulative impact of lateral gene transfer in prokaryote genome evolution. Proc. Natl Acad. Sci. USA 105, 10039â10044 (2008).
Zhaxybayeva, O. et al. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc. Natl Acad. Sci. USA 106, 5865â5870 (2009).
Bassham, J. A. & Calvin, M. The Path of Carbon in Photosynthesis (Prentice Hall, Englewood Cliffs, 1957).
Evans, M. C. W., Buchanan, B. B. & Arnon, D. I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl Acad. Sci. USA 55, 928â934 (1966).
Tcherkez, G. G., Farquhar, G. D. & Andrews, T. J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl Acad. Sci. USA 103, 7246â7251 (2006).
Ellis, R. J. The most abundant protein on Earth. Trends Biochem. Sci. 4, 241â244 (1979).
Keeley, J. E. & Rundel, P. W. Evolution of CAM and C4 carbon-concentrationg mechanisms. Int. J. Plant Sci. 164, S55âS77 (2003).
Todd, J. D. et al. Molecular dissection of bacterial acrylate catabolism - unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ. Microbiol. 12, 327â343 (2010)
Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102â8107 (2008).
Brochier, C., Gribaldo, S., Zivanovic, Y., Confalonieri, F. & Forterre, P. Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol. 6, R42 (2005).
Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaea: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol. 6, 245â252 (2008).
Robertson, C. E., Harris, J. K., Spear, J. R. & Pace, N. R. Phylogenetic diversity and ecology of environmental Archaea. Curr. Opin. Microbiol. 8, 638â642 (2005).
Quandt, L., Gottschalk, G., Ziegler, H. & Stichler, W. Isotope discrimination by photosynthetic bacteria. FEMS Microbiol. Lett. 1, 125â128 (1977).
McNevin, D. B. et al. Differences in carbon isotope discrimination of three variants of D-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. J. Biol. Chem. 282, 36068â36076 (2007).
SirevÃ¥g, R., Buchanan, B. B., Berry, J. A. & Troughton, J. H. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112, 35â38 (1977).
Preub, A., Schauder, R. & Fuchs, G. Carbon isotope fractionation by autotrophic bacteria with three different CO2 fixation pathways. Z. Naturforsch. 44c, 397â402 (1989).
House, C. H. et al. Carbon isotopic composition of individual Precambrian microfossils. Geology 28, 707â710 (2000).
Holo, H. & SirevÃ¥g, R. Autotrophic growth and CO2 fixation in Chloroflexus aurantiacus. Arch. Microbiol. 145, 173â180 (1986).
Ivanovsky, R. N. et al. Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6. Microbiology 145, 1743â1748 (1999).
van der Meer, M. T., Schouten, S., de Leeuw, J. W. & Ward, D. M. Autotrophy of green non-sulphur bacteria in hot spring microbial mats: biological explanations for isotopically heavy organic carbon in the geological record. Environ. Microbiol. 2, 428â435 (2000).
House, C. H., Schopf, J. W. & Stetter, K. O. Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes. Org. Geochem. 34, 345â356 (2003).
Aoshima, M., Ishii, M. & Igarashi, Y. A novel biotin protein required for reductive carboxylation of 2-oxoglutarate by isocitrate dehydrogenase in Hydrogenobacter thermophilus TK-6. Mol. Microbiol. 51, 791â798 (2004).
Miura, A., Kameya, M., Arai, H., Ishii, M. & Igarashi, Y. A soluble NADH-dependent fumarate reductase in the reductive citric acid cycle of Hydrogenobacter thermophilus TK-6. J. Bacteriol. 190, 7170â7177 (2008).
Acknowledgements
G. F. acknowledges the contributions of numerous doctoral or postdoctoral students during the past 30 years: E. Stupperich, G. Eden and K. Jansen (Marburg); M. Rühlemann, S. Länge, R. Schauder, S. Schäfer and G. Strauβ (Ulm); and S. Herter, S. Friedmann and C. Menendez (Freiburg). Our work depended on fruitful collaborations with W. Eisenreich, A. Bacher, H. Huber, K. Stetter, M. Müller, W. Buckel and R. Thauer. This work was supported by Deutsche Forschungsgemeinschaft and EvonikâDegussa. Thanks to M. Ziemski for the database analysis that was used as the basis for Fig. 1.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Thermophilic
-
An organism that grows best at temperatures exceeding the ambient temperature. Extreme thermophiles (hyperthermophiles) have optimal growth temperatures above 80 °C.
- Chemolithoautotroph
-
An organism that derives energy from a chemical reaction (chemotrophic) based on inorganic substrates as electron donors (lithotrophic), and CO2 serves as sole carbon source (autotrophic = self-nourishing).
- Monsanto process
-
An important method for the manufacture of acetic acid. The feedstock methanol is combined catalytically with CO to give acetic acid. The reaction is catalysed by a metal (rhodium) catalyst. Methanol reacts with catalytic amounts of HI to give methyl iodide. The reaction cycle is completed by the loss of CH3COI to regenerate the metal catalyst. The CH3COI reacts with water to generate acetic acid and regenerate HI.
Rights and permissions
About this article
Cite this article
Berg, I., Kockelkorn, D., Ramos-Vera, W. et al. Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8, 447â460 (2010). https://doi.org/10.1038/nrmicro2365
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2365