Abstract
Studies investigating the relationship between TP53 Arg72Pro polymorphism and endometrial cancer risk reported conflicting results. To explore a more precise estimate of the effect of this polymorphism on endometrial carcinogenesis, a meta-analysis was performed by searching eligible studies in PubMed. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the association for codominant model (Arg/Arg vs. Pro/Pro, Arg/Pro vs. Pro/Pro), dominant model (Arg/Arg + Arg/Pro vs. Pro/Pro), and recessive model (Arg/Arg vs. Arg/Pro + Pro/Pro), respectively. Subgroup analyses were performed by Hardy–Weinberg equilibrium (HWE) in controls, the specimen of cases for determining TP53 genotypes, sample size, the source of control and case groups, and ethnicity. We identified 8 case–control studies involving 2,154 subjects for this meta-analysis. Overall, no evidence of association was observed between TP53 genotypes and endometrial cancer risk in all genetic models (Arg/Arg vs. Pro/Pro: OR = 0.98, 95% CI: 0.69–1.39, P = 0.90; Arg/Pro vs. Pro/Pro: OR = 1.00, 95% CI: 0.71–1.42, P = 0.98; dominant model: OR = 0.99, 95% CI: 0.71–1.38, P = 0.95; recessive model: OR = 1.06, 95% CI: 0.80–1.41, P = 0.95). Stratified analyses also detected no significant association in any subgroup, except among those studies with controls deviated from HWE in recessive model (OR = 1.60, 95% CI: 1.07–2.39). In conclusion, we did not observe any evidence for a role of TP53 Arg72Pro polymorphism in endometrial cancer. The reported significant association between this polymorphism and endometrial cancer risk may be due to methodological errors such as selection bias, small sample size, Type I error, and population stratification.

Similar content being viewed by others
References
Linkov F, et al. Endometrial hyperplasia, endometrial cancer and prevention: gaps in existing research of modifiable risk factors. Eur J Cancer. 2008;44:1632–44.
Amant F, et al. Endometrial cancer. Lancet. 2005;366:491–505.
Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomarkers Prev. 2002;11:1531–43.
Lane G. Obesity and gynaecological cancer. Menopause Int. 2008;14:33–7.
Tinelli A, et al. Hormonal carcinogenesis and socio-biological development factors in endometrial cancer: a clinical review. Acta Obstet Gynecol Scand. 2008;87:1101–13.
Kang S, Roh JW, Kim JW. Single nucleotide polymorphism: a new risk factor for endometrial cancer? Future Oncol. 2005;1:323–30.
Meyer LA, Westin SN, Lu KH, Milam MR. Genetic polymorphisms and endometrial cancer risk. Expert Rev Anticancer Ther. 2008;8:1159–67.
Levine AJ, Finlay CA, Hinds PW. P53 is a tumor suppressor gene. Cell. 2004;116(Suppl 2):S67–9. (1 p following S69).
Soussi T, Wiman KG. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 2007;12:303–12.
Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009;9:95–107.
Matlashewski GJ, et al. Primary structure polymorphism at amino acid residue 72 of human p53. Mol Cell Biol. 1987;7:961–3.
Thomas M, et al. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol. 1999;19:1092–100.
Dumont P, Leu JI, Della Pietra AC III, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33:357–65.
Klug SJ, et al. TP53 codon 72 polymorphism and cervical cancer: a pooled analysis of individual data from 49 studies. Lancet Oncol. 2009;10:772–84.
Dai S, Mao C, Jiang L, Wang G, Cheng H. P53 polymorphism and lung cancer susceptibility: a pooled analysis of 32 case-control studies. Hum Genet. 2009;125:633–8.
Zhang Z, et al. P53 codon 72 polymorphism contributes to breast cancer risk: a meta-analysis based on 39 case-control studies. Breast Cancer Res Treat. 2009;120:509–17.
Zhou Y, et al. P53 codon 72 polymorphism and gastric cancer: a meta-analysis of the literature. Int J Cancer. 2007;121:1481–6.
Esteller M, García A, Martínez-Palones JM, Xercavins J, Reventós J. Susceptibility to endometrial cancer: influence of allelism at p53, glutathione S-transferase (GSTM1 and GSTT1) and cytochrome P-450 (CYP1A1) loci. Br J Cancer. 1997;75:1385–8.
Peller S, Halperin R, Schneider D, Kopilova Y, Rotter V. Polymorphisms of the p53 gene in women with ovarian or endometrial carcinoma. Oncol Rep. 1999;6:193–7.
Agorastos T, et al. P53 codon 72 polymorphism and correlation with ovarian and endometrial cancer in Greek women. Eur J Cancer Prev. 2004;13:277–80.
Niwa Y, et al. Association of p73 G4C14-to-A4T14 polymorphism at exon 2 and p53 Arg72Pro polymorphism with the risk of endometrial cancer in Japanese subjects. Cancer Lett. 2005;219:183–90.
Ueda M, et al. Germline polymorphism of p53 codon 72 in gynecological cancer. Gynecol Oncol. 2006;100:173–8.
Ashton KA, et al. Polymorphisms in TP53 and MDM2 combined are associated with high grade endometrial cancer. Gynecol Oncol. 2009;113:109–14.
Nunobiki O, et al. Polymorphisms of p53 codon 72 and MDM2 promoter 309 and the risk of endometrial cancer. Hum Cell. 2009;22:101–6.
Zubor P, et al. The p53 codon 72 exon 4 BstUI polymorphism and endometrial cancer in Caucasian women. Oncology. 2009;76:173–83.
Roh JW, et al. p53 and p21 genetic polymorphisms and susceptibility to endometrial cancer. Gynecol Oncol. 2004;93:499–505.
Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.
Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.
Tobias A. Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull. 1999;8:15–7.
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.
Dual S, Tweedie R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc. 2000;95:89–98.
Saffari B, et al. Association of p53 mutations and a codon 72 single nucleotide polymorphism with lower overall survival and responsiveness to adjuvant radiotherapy in endometrioid endometrial carcinomas. Int J Gynecol Cancer. 2005;15:952–63.
Thompson SG. Why sources of heterogeneity in meta-analysis should be investigated. BMJ. 1994;309:1351–5.
Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med. 1999;18:2693–708.
Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J. A method for meta-analysis of molecular association studies. Stat Med. 2005;24:1291–306.
Mitchell AA, Cutler DJ, Chakravarti A. Undetected genotyping errors cause apparent overtransmission of common alleles in the transmission/disequilibrium test. Am J Hum Genet. 2003;72:598–610.
Hosking L, et al. Detection of genotyping errors by Hardy-Weinberg equilibrium testing. Eur J Hum Genet. 2004;12:395–9.
Salanti G, Amountza G, Ntzani EE, Ioannidis JP. Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet. 2005;13:840–8.
Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP. Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol. 2006;163:300–9.
Lea IA, et al. Genetic pathways and mutation profiles of human cancers: site and exposure-specific patterns. Carcinogenesis. 2007;28:1851–8.
Spafford MF, et al. Detection of head and neck squamous cell carcinoma among exfoliated oral mucosal cells by microsatellite analysis. Clin Cancer Res. 2001;7:607–12.
Dwan K, et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS One. 2008;3:e3081.
Acknowledgments
This work was supported by the National 973 program of China (2004CB518605), the National 863 project of China (2006AA020501), the National Key Sci-Tech Special Project of China (2008ZX10002-020), the Project of the Shanghai Municipal Science and Technology Commission (03dz14086), and the National Natural Science foundation of China (30024001, 30771188).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jiang, DK., Yao, L., Ren, WH. et al. TP53 Arg72Pro polymorphism and endometrial cancer risk: a meta-analysis. Med Oncol 28, 1129–1135 (2011). https://doi.org/10.1007/s12032-010-9597-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12032-010-9597-x