Skip to main content
Log in

The sexual differentiation of Cannabis sativa L.: A morphological and molecular study

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Cannabis sativa L. is a dioecious species with sexual dimorphism occurring in a late stage of plant development. Sex is determined by heteromorphic chromosomes (X and Y): male is the heterogametic sex (XY) and female is the homogametic one (XX). The sexual phenotype of Cannabis often shows some flexibility leading to the differentiation of hermaphrodite flowers or bisexual inflorescences (monoecious phenotype). Sex is considered an important trait for hemp genetic improvement; therefore, the study of the mechanism of sexual differentiation is of paramount interest in hemp research. A morphological and molecular study of Cannabis sativa sexual differentiation has been carried out in the Italian dioecious cultivar Fibranova.

Microscopic analysis of male and female apices revealed that their reproductive commitment may occur as soon as the leaves of the fourth node emerge; the genetic expression of male and female apices at this stage has been compared by cDNA-AFLP. A rapid method for the early sex discrimination has been developed, based on the PCR amplification of a male-specific SCAR marker directly from a tissue fragment.

Five of the several cDNA-AFLP polymorphic fragments identified have been confirmed to be differentially expressed in male and female apices at the fourth node. Cloning and sequencing revealed that they belong to nine different mRNAs that were all induced in the female apices at this stage. Four out of them showed a high degree of similarity with known sequences: a putative permease, a SMT3-like protein, a putative kinesin and a RAC-GTP binding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., W. Gish, W. Miller, E.W. Myers & D.J. Lipman, 1990. Basic local alignment search tool. J Mol Biol 215: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Bachem, C.W.B., R.S. van der Hoeven, S.M. de Bruijn, D. Vreugdenhil, M. Zabeau & R.G.F. Visser, 1996. Visualization of differential gene expression using a novel method of RNA finger-printing based on AFLP: Analysis of gene expression during potato tuber development. Plant J 9: 745–753.

    Article  CAS  PubMed  Google Scholar 

  • Bachem, C.W.B., R.J.F.J. Oomen & R.G.F. Visser, 1998. Transcript imaging with cDNA-AFLP: A step-by-step protocol. Plant Mol Biol Rep 16: 157–173.

    Article  CAS  Google Scholar 

  • Baskin, T.I., 2000. The cytoskeleton. In: B. Buchanan, W. Gruissem & R. Jones, (Eds.), Biochemisty and Molecular Biology of Plants, pp. 219–221. American Society of Plant Physiologists, Rockville, Maryland.

    Google Scholar 

  • Boecke, J.D., 1989. Transposable elements in Saccharomyces cerevisiae. In: D.E. Berg & M.M. Howe (Ed.), Mobile DNA, pp. 335–374. American Society of Microbiology, Washington DC.

    Google Scholar 

  • Bredemann, G., 1938. Züchtung des Hanfes auf Fasergehaltes. Die Ergebnisse des Jahres 1937. Faserforschung 4: 239–258.

    Google Scholar 

  • Charlesworth, D. & D.S. Guttman, 1999. The evolution of dioecy and plant sex chromosome systems. In: C.C. Ainsworth (Ed.), Sex Determination in Flowering Plants, pp. 25–33. Bios Scientific Publishers, Oxford, Washington DC.

    Google Scholar 

  • Corpet, F., 1988. Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 16(22): 10881–10890.

    PubMed  CAS  Google Scholar 

  • Donnison, I.S. & S.G. Grant, 1999. Male sex-specific DNA in Silene latifolia and other dioecious plant species. In: C.C. Ainsworth (Ed.), Sex Determination in Flowering Plants, pp. 73–88. Bios Scientific Publishers, Oxford–Washington DC.

    Google Scholar 

  • Faeti, V., G. Mandolino & P. Ranalli, 1996. Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breeding 115: 367–370.

    Google Scholar 

  • Forapani, S., A. Carboni, C. Paoletti, V.M.C. Moliterni, P. Ranalli & G. Mandolino, 2001. Comparison of hemp varieties using random amplified polymorphic DNA markers. Crop Sci 41: 1682–1688.

    Article  CAS  Google Scholar 

  • Galoch, E., 1980. The hormonal control of sex differentiation in dioecious plants of hemp (Cannabis sativa). Acta Physiol Plant vol II (n.1): 31–39.

    CAS  Google Scholar 

  • Grant, S., A. Houben, B. Vyskot, J. Siroky, W.H. Pan, J. Macas & H. Saedler, 1994. Genetics of sex determination in flowering plants. Dev Genet 15: 214–230.

    Google Scholar 

  • Harley, C.B., 1997. Hybridization of Oligo(dT) to RNA on nitrocellulose. Gene Anal Tech 4: 17–22.

    Google Scholar 

  • Hartings, H., 1999. High resolution fingerprinting of transcribed genes by means of a modified cDNA-AFLP method. Maydica 44: 179–186.

    Google Scholar 

  • Klimyuk, V.I., B.J. Carrolm, C.M. Thomas & J.D. Jones, 1993. Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3: 493–494.

    PubMed  CAS  Google Scholar 

  • Lacombe, J.-P., 1980. Discrimination des sexes en fonction de caractères végétatifs précoces chez le Chanvre dioïque (Cannabis sativa L.). Physiol Vég 18: 419–430.

    Google Scholar 

  • Mandolino, G., A. Carboni, S. Forapani & P. Ranalli, 1998. DNA markers associated with sex phenotype in hemp (Cannabis sativa L.). In: Proc Bast Fibrous Plants Today and Tomorrow, St Petersburg, September 28–30, pp. 197–201.

  • Mandolino, G., A. Carboni, S. Forapani, V. Faeti & P. Ranalli, 1999. Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theor Appl Genet 98: 86–92.

    CAS  Google Scholar 

  • Mandolino, G., A. Carboni, M. Bagatta, V.M.C. Moliterni & P. Ranalli, 2002. Occurrence and frequency of putatively Y chromosome linked DNA markers in Cannabis sativa L. Euphytica 126: 211–216.

    CAS  Google Scholar 

  • Mandolino, G. & P. Ranalli, 2002. The applications of molecular markers in genetics and breeding of hemp. J Ind Hemp 7: 7–24.

    CAS  Google Scholar 

  • Mediavilla, V., M. Jonquera, I. Schmid-Slembrouck & A. Soldati, 1998. A decimal code for growth stages of hemp (Cannabis sativa L.). J Ind Hemp Ass 5: 65–74.

    Google Scholar 

  • Mohan Ram, H.Y. & R. Nath, 1964. The morphology and embryology of Cannabis sativa L. Phytomorphology 14: 414–429.

    Google Scholar 

  • Mohan Ram, H.Y. & R. Sett, 1982a. Modification of growth and sex expression in Cannabis sativa by aminoethoxyvinylglycine and etephon. Z Planzenphysiol Bd 105: 165–172.

    Google Scholar 

  • Mohan Ram, H.Y. & R. Sett, 1982b. Induction of fertile male flowers in genetically female Cannabis sativa plants by silver nitrate and silver thiosulphate anionic complex. Theor Appl Genet 62: 369–375.

    Google Scholar 

  • Peil, A., H. Flachowsky, E. Schumann & W.E. Weber, 2003. Sex-linked AFLP markers indicate a pseudoautosomal region in hemp (Cannabis sativa L.). Theor Appl Genet 107: 102–109.

    PubMed  CAS  Google Scholar 

  • Sakamoto, K., Y. Akiyama, K. Fukui, H. Kamada & S. Satoh, 1998. Characterization, genome size and morphology of sex chromosomes in hemp (Cannabis sativa L.). Cytologia 63: 459– 464.

    Google Scholar 

  • Sakamoto, K., N. Ohmido, K. Fukui, H. Kamada & S. Satoh, 2000. Site-specific accumulation of a LINE-like retrotrasposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44: 723–732.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., E.F. Fritisch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.

  • Scutt, C.P., S.E. Robertson, M.E. Willis, K. Kamisugi, Y. Li, M.R. Shenton, R.H. Smith, H. Martin & P.M. Gilmartin, 1999. Molecular approaches to the study of sex determination in dioecious Silene latifolia. In: C.C. Ainsworth (Ed.), Sex Determination in Flowering Plants, pp. 51–72. Bios Scientific Publishers, Oxford, Washington DC.

    Google Scholar 

  • Valster, A.H., P.K. Hepler & J. Chernoff, 2000. Plant GTP-ases: The Rhos in bloom. Trends Cell Biol 10: 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Tao, L., A.Y. Cheung & H. Wu, 2002. Plant Rac-Like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14: 2745–2760.

    PubMed  CAS  Google Scholar 

  • The Angiosperm Phylogeny Group, 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGII. Bot J Linn Soc 141: 399–436.

    Google Scholar 

  • Westgaard, M., 1958. The mechanism of sex determination in dioecious plants. Adv Genet 9: 217–281.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Cristiana Moliterni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moliterni, V.M.C., Cattivelli, L., Ranalli, P. et al. The sexual differentiation of Cannabis sativa L.: A morphological and molecular study. Euphytica 140, 95–106 (2004). https://doi.org/10.1007/s10681-004-4758-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-004-4758-7

Key words

Navigation