Skip to main content
Log in

Molecular characterization of microalgae used in aquaculture with biotechnology potential

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Microalgae are the main component of first tropic level in aquatic food chain; it is for this reason that they are used as food in aquaculture. Also due to its biotechnological potential properties, they are used in the production of diverse components, dyes, antioxidants, enzymes, emulsifiers, etc. The extended ways of microalgae applications require physiologically and genetically stable cultures as well as correctly identified organisms to guarantee reproducibility and reliability. But the variety of species and the morphological similarity between some of them make difficult the identification of some microalgae. The use of molecular markers has supplied a very useful tool for identification of microalgae in fast mode, such as in classification. The present study has worked on the molecular characterization of main species of microalgae used in aquaculture in base of the molecular markers 18S rRNA and 16S rRNA. Microalgae DNA has been amplified and sequenced, and the resultant sequences were analyzed and reflected in phylogenetic trees. The phylogenetic analyses obtained reflect as both molecular markers allow to differentiate the main genus used in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alverson AJ, Kolnick L (2005) Intragenomic nucleotide polymorphism among small subunit (18S) rDNA paralogs in the diatom genus Skeletonema (Bacillariophyta). J Phycol 41:1248–1257

    Article  CAS  Google Scholar 

  • Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245

    Article  Google Scholar 

  • Benemann JR, Van Olst JC, Massingill M, Carlberg JA, Weissman JC, Brune DE (2003) The controlled eutrophication process: using microalgae for CO2 utilization and agricultural fertilizer recycling. In: Gale J, Kaya Y (eds) Greenhouse gas control technologies, vols I and II, proceedings, pp 1433–1438

  • Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361

    Article  PubMed  CAS  Google Scholar 

  • Bird C, Murphy C, Rice E, Ragan M (1992) The 18S rRNA gene sequences of four commercially important seaweeds. J Appl Phycol 4:379–384

    Article  CAS  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  PubMed  CAS  Google Scholar 

  • Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18:1057–1069

    Article  PubMed  CAS  Google Scholar 

  • Boyer SL, Johansen JR, Flechtner VR, Howard GL (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16 s rRNA gene and associated 16S–23S ITS region. J Phycol 38:1222–1235

    Article  CAS  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    Article  CAS  Google Scholar 

  • Butcher RW (1959) An introductory account of the smaller algae of British coastal waters. Part I: introduction and chlorophyceae. Minist Agric Fish Food, Fish Invest, Great Britain

  • Cavallis LL, Edwards AWF (1967) Phylogenetic analysis—models and estimation procedures. Evolution 21:550–555

    Article  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trend Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  • Cocquyt E, Verbruggen H, Leliaert F, Zechman FW, Sabbe K, De Clerck O (2009) Gain and loss of elongation factor genes in green algae. BMC Evol Biol 9:39

    Google Scholar 

  • Coutteau P (1996) Manual on the production and use of live food for aquaculture. FAO Fisheries. Technical Paper. Cap 2-Micro-Algae 361

  • Dayananda C, Kumudha A, Sarada R, Ravishankar GA (2010) Isolation, characterization and outdoor cultivation of green microalgae Botryococcus sp. Sci Res Essay 5:2497–2505

    Google Scholar 

  • de-Bashan LE, Hernandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474

    Article  PubMed  CAS  Google Scholar 

  • Diraman H, Koru E, Dibeklioglu H (2009) Fatty acid profile of Spirulina platensis used as a food supplement. Israeli J Aquac-Bamidgeh 61:134–142

    Google Scholar 

  • Ghasemi Y, Rasoul-Amini S, Morowvat MH, Raee MJ, Ghoshoon MB, Nouri F, Negintaji N, Parvizi R, Mosavi-Azam SB (2008) Characterization of hydrocortisone biometabolites and 18S rRNA gene in chlamydomonas reinhardtii cultures. Molecules 13:2416–2425

    Article  PubMed  CAS  Google Scholar 

  • Gile GH, Novis PM, Cragg DS, Zuccarello GC, Keeling PJ (2009) The distribution of elongation factor-1 alpha (EF-1 alpha), elongation factor-like (EFL), and a non-canonical genetic code in the ulvophyceae: discrete genetic characters support a consistent phylogenetic framework. J Eukaryot Microbiol 56:367–372

    Article  PubMed  CAS  Google Scholar 

  • Gomez PI, Gonzalez MA (2004) Genetic variation among seven strains of Dunaliella salina (Chlorophyta) with industrial potential, based on RAPD banding patterns and on nuclear ITS rDNA sequences. Aquaculture 233:149–162

    Article  Google Scholar 

  • Gouveia L, Coutinho C, Mendonca E, Batista AP, Sousa I, Bandarra NM, Raymundo A (2008) Functional biscuits with PUFA-omega 3 from Isochrysis galbana. J Sci Food Agric 88:891–896

    Article  CAS  Google Scholar 

  • Guevara M, Lodeiros U, Gomez O, Lemus N, Nunez P, Romero L, Vasquez A, Rosales N (2005) Carotenogenesis of five strains of the algae Dunaliella sp (Chlorophyceae) isolated from Venezuelan hypersaline lagoons. Rev Biol Trop 53:331–337

    PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

  • Harper JT, Waanders E, Keeling PJ (2005) On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J Syst Evol Microbiol 55:487–496

    Article  PubMed  CAS  Google Scholar 

  • Herrero B, Madriñan M, Vieites JM, Espiñeira M (2010) Rapid identification of seaweeds in food products by PCR combined with ALF-RFLP and FINS methodologies. J Agric Food Chem 58:11586–11592

    Article  PubMed  CAS  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical-test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequence of five marine Synechococcus strains. J Mol Evol 48:723–739

    Article  PubMed  CAS  Google Scholar 

  • Hoshina R, Iwataki M, Imamura N (2010) Chlorella variabilis and Micractinium reisseri sp nov (Chlorellaceae, Trebouxiophyceae): redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year. Phycol Res 58:188–201

    Article  CAS  Google Scholar 

  • John U, Beszteri S, Glockner G, Singh R, Medlin L, Cembella AD (2010) Genomic characterisation of the ichthyotoxic prymnesiophyte Chrysochromulina polylepis, and the expression of polyketide synthase genes in synchronized cultures. Eur J Phycol 45:215–229

    Article  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirard ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Biores Technol 101:1406–1413

    Article  CAS  Google Scholar 

  • Kooistra WHFC, Sarno D, Hernández-Becerril DU, Assmy P, Di Prisco C, Montresor C (2010) Comparative molecular and morphological phylogenetic analyses of taxa in the Chaetocerotaceae (Bacillariophyta). Phycologia 49:471–500

    Article  Google Scholar 

  • Lyra C, Hantula J, Vainio E, Rapala J, Rouhiainen L, Sivonen K (1997) characterizationof cyanobacteria by SDS-PAGE of whole-cell proteins and PCR/RFLP of the 16S rRNA gene. Arch Microbiol 168:176–184

    Article  PubMed  CAS  Google Scholar 

  • Mao TK, Van de Water J, Gershwin ME (2005) Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. J Med Food 8:27–30

    Article  PubMed  CAS  Google Scholar 

  • Mc Carthy C (1996) Chromas version 1.45. School of Health science, Griffifth University, Gold Coast Campus, Queensland, Australia

  • Medlin LK, Elwood HJ, Stickel S, Sogin ML (1991) Morphological and genetic variation within the diatom skeletonema costatum (Bacillariophyta): evidence for a new species, skeletonema pseudocostatum. J Phycol 27:514–524

    Article  CAS  Google Scholar 

  • Novis PM, Halle C, Wilson B, Tremblay LA (2009) Identification and characterization of freshwater algae from a pollution gradient using rbcL sequencing and toxicity testing. Arch Environ Contam Toxicol 57:504–514

    Article  PubMed  CAS  Google Scholar 

  • Penna A, Galluzzi L (2008) PCR techniques as diagnostic tools for the identification and enumeration of toxic marine phytoplankton species. Algal toxins: nature, occurrence, effect and detection, pp. 261–283

  • Pinto AC, Guarieiro LLN, Rezende MJC, Ribeiro NM, Torres EA, Lopes WA, Pereira PAD, de Andrade JB (2005) Biodiesel: an overview. J Brazilian Chem Soc 16:1313–1330

    Article  CAS  Google Scholar 

  • Pratoomyot J, Srivilas P, Noiraksar T, Songklanakarin (2005) Fatty acids composition of 10 microalgal species J Sci Technol 27:1179–1187

  • Proschold T, Marin B, Schlosser UG, Melkonian M (2001) Molecular phylogeny and taxonomic revision of chlamydomonas (Chlorophyta). I. Emendation of chlamydomonas ehrenberg and chloromonas gobi, and description of oogamochlamys gen. nov and lobochlamys gen. nov. Protist 152:265–300

    Article  PubMed  CAS  Google Scholar 

  • Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Biores Technol 100:5988–5995

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The Neighbor-Joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Saker M, Moreira C, Martins J, Neilan B, Vasconcelos VM (2009) DNA profiling of complex bacterial populations: toxic cyanobacterial blooms. Appl Microbiol Biotechnol 85:237–252

    Article  PubMed  CAS  Google Scholar 

  • Santaclara FJ, Espiñeira M, Cabado AG, Aldasoro A, Gonzalez-Lavin N, Vieites JM (2006) Development of a method for the genetic identification of mussel species belonging to Mytilus, Perna, Aulacomya, and other genera. J Agric Food Chem 54:8461–8470

    Article  PubMed  CAS  Google Scholar 

  • Sastre RR, Posten C (2010) The variety of microalgae applications as a renewable resource. Chemie Ingenieur Technik 82:1925–1939

    Article  Google Scholar 

  • Sayre RT, Wagner RE, Siripornadulsil S, Farias C (2003) Transgenic algae for delivering antigens to an animal. US

  • Sobczuk TM, Chisti Y (2010) Potential fuel oils from the microalga Choricystis minor. J Chem Technol Biotechnol 85:100–108

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tateno Y, Takezaki N, Nei M (1994) Relative efficiencies of the maximum-likelihood, Neighbor-Joining, and Maximum-Parsimony methods when substitution rate varies with site. Mol Biol Evol 11:261–277

    PubMed  CAS  Google Scholar 

  • Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641

    Article  PubMed  CAS  Google Scholar 

  • Walsh DT, Withstanldley CA, Kraus RA, Petrovits BJ (1987) Mass culture of selected marine microalgae for the nursery production of bivalve seed. J Shellfish Res 6:71–77

    Google Scholar 

  • Williams PJL, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Winfrey MR, Rott MA, Wortman AT (1997) UnraVeling DNA: molecular biology for the laboratory. Prentice Hall, New York

    Google Scholar 

  • Yang HL, Lu CK, Chen SF, Chen YM, Chen YM (2010) Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol 12:173–185

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492

    Article  CAS  Google Scholar 

  • Yu Y, Chen B, You W (2007) Identification of the alga known as Nannochloropsis Z-1 isolated from a prawn farm in Hainan, China as Chlorella. World J Microbiol Biotechnol 23:207–210

    Article  Google Scholar 

  • Zakharova YR, Adel’shin RV, Parfenova VV, Bedoshvili YD, Likhoshway YV (2010) Taxonomic characterization of the microorganisms associated with the cultivable diatom Synedra acus from Lake Baikal. Microbiology 79:679–687

    Article  CAS  Google Scholar 

  • Zhang H, Bhattacharya D, Lin S (2005) Philogeny of dinoflagellates based on mitochondrial cytochrome B and nuclear small subunit rDNA sequence comparison. J Phycol 41:411–420

    Article  CAS  Google Scholar 

  • Zhou XR, Robert SS, Petrie JR, Frampton DMF, Mansour MP, Blackburn SI, Nichols PD, Green AG, Singh SP (2007) Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 68:785–796

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Arturo Silva Abuin (The Royal University of Santiago de Compostela) and Tito Peleteiro (Spanish Institute of Oceanography) for providing the microalgae strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Espiñeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, M., Lago, F.C., Vieites, J.M. et al. Molecular characterization of microalgae used in aquaculture with biotechnology potential. Aquacult Int 20, 847–857 (2012). https://doi.org/10.1007/s10499-012-9506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-012-9506-8

Keywords