Abstract.
The aim of this work was to investigate the potential chronobiotic properties of slow-release caffeine, in comparison with melatonin, on resynchronization of endogenous melatonin and cortisol secretions after an eastbound flight by jet incurring a time loss of 7 h. A group of 27 reservists of the US Air Force received either slow-release caffeine (300 mg), melatonin (5 mg) or placebo before, during and/or after the transmeridian flight. Saliva and urine were sampled before the flight in the United States (from day –2 to day 0) and after the flight in France (from day 1 to day 10). Saliva was collected once a day on waking to determine saliva melatonin and cortisol concentrations. In addition, concentrations of caffeine in saliva were determined three times a day and of 6-sulphatoxymelatonin in urine collected overnight to check that the treatment regimes had been complied with. From day 3 to day 5, post-flight saliva melatonin concentrations were significantly different from control values in the placebo group only. During treatment with melatonin, the mean urinary 6-sulphatoxymelatonin concentration in the melatonin group was more than twice as high as in the two other groups. In the slow-release caffeine group and the melatonin group, mean saliva cortisol concentrations were significantly lower than control from day 2 to day 5, whereas the placebo group had a mean saliva cortisol concentration significantly lower than the control value from day 2 to day 9. In conclusion, these results indicate that administration of slow-release caffeine, as well as of melatonin, allows a faster resynchronization of hormone rhythms during the 4 days following an eastbound flight incurring the loss of 7 h.
Similar content being viewed by others
Author information
Authors and Affiliations
Additional information
Electronic Publication
Rights and permissions
About this article
Cite this article
Piérard, C., Beaumont, M., Enslen, M. et al. Resynchronization of hormonal rhythms after an eastbound flight in humans: effects of slow-release caffeine and melatonin. Eur J Appl Physiol 85, 144–150 (2001). https://doi.org/10.1007/s004210100418
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s004210100418