Abstract
Surveys of genetic variation within cosmopolitan marine species often uncover deep divergences, indicating historical separation and potentially cryptic speciation. Based on broad geographic (coastal eastern North America, Gulf of Mexico, western Africa, Australia, and Hawaii) and temporal sampling (1991–2003), mitochondrial (control region [CR] and cytochrome oxidase I [COI]) and nuclear gene (lactate dehydrogenase A intron 6 [LDHA6]) variation among 76 individuals was used to test for cryptic speciation in the scalloped hammerhead, Sphyrna lewini (Griffith and Smith). CR and COI gene trees confirmed previous evidence of divergence between Atlantic and Indo-Pacific scalloped hammerhead populations; populations were reciprocally monophyletic. However, the between-basin divergence recorded in the mtDNA genome was not reflected in nuclear gene phylogenies; alleles for LDHA6 were shared between ocean basins, and Atlantic and Indo-Pacific populations were not reciprocally monophyletic. Unexpectedly, CR, COI, and LDHA6 gene trees recovered a deep phylogenetic partition within the Atlantic samples. For mtDNA haplotypes, which segregated by basin, average genetic distances were higher among Atlantic haplotypes (CR: D HKY=0.036, COI: D GTR=0.016) than among Indo-Pacific haplotypes (CR: D HKY=0.010, COI: D GTR=0.006) and approximated divergences between basins for CR (D HKY=0.036 within Atlantic; D HKY=0.042 between basins). Vertebral counts for eight specimens representing divergent lineages from the western north Atlantic were consistent with the genetic data. Coexistence of discrete lineages in the Atlantic, complete disequilibrium between nuclear and mitochondrial alleles within lineages and concordant partitions in genetic and morphological characters indicates reproductive isolation and thus the occurrence of a cryptic species of scalloped hammerhead in the western north Atlantic. Effective management of large coastal shark species should incorporate this important discovery and the inference from sampling that the cryptic scalloped hammerhead is less abundant than S. lewini, making it potentially more susceptible to fishery pressure.
Similar content being viewed by others
References
Abercrombie DL, Clarke SC, Shivji MS (2005) Global-scale genetic identification of hammerhead sharks: application to assessment of the international fin trade and law enforcement. Conserv Genet (in press)
Avise JC, Ball RM (1990) Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Surv Evol Biol 7:45–67
Baum JK, Myers RA, Kehler D, Gerber L, Blanchard W, Harley SJ (2002) Preliminary standardized catch rates for pelagic and large coastal sharks from logbook and observer data from the Northwest Atlantic. Col Vol Sci Pap ICCAT 54:1294–1313
Bermingham E, McCafferty SS, Martin AP (1999) Fish biogeography and molecular clocks: Perspectives from the Panamanian isthmus. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic, NewYork, pp 113–128
Bonfil R (1997) Status of shark resources in the Southern Gulf of Mexico and Caribbean: implications for management. Fish Res Amsterdam, 29:101–117
Borsa P (2002) Allozyme, mitochondrial-DNA, and morphometric variability indicate cryptic species of anchovy (Engraulis encrasicolus). Biol J Linnean Soc 75:261–269
Brown CA (1998) Standardized catch rates of four shark species in the Virginia–Massachusetts (U.S.) rod and reel fishery 1986–1997. SB-IV-5, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Center, Miami
Campton DE, Bass AL, Chapman FA, Bowen BW (2000) Genetic distinction of pallid, shovelnose, and Alabama sturgeon: emerging species and the US Endangered Species Act. Conser Gen 1:17–32
Castro JI, Woodley CM, Brudek RL (1999) A preliminary evaluation of the status of shark species. FAO Tech Pap 0 (380): I–iv;1–72
Colborn J, Crabtree RE, Shaklee JB, Pfeiler E, Bowen BW (2001) The evolutionary enigma of bonefishes (Albula spp.): cryptic species and ancient separations in a globally distributed shorefish. Evolution 55: 807–820
Compagno LJV (1984) FAO species catalogue, vol 4. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Part 1. Hexanchiformes to Lamniformes. United Nations Development Programme Food and Agriculture Organization of the United Nations, Rome, Italy
Compagno LJV, Cook SF (1995) The exploitation and conservation of freshwater elasmobranchs: status of taxa and prospects for the future. J Aquariculture Aquat Sci 7:62–90
Cramer J (1998) Large pelagic logbook catch rates for sharks. SB-IV-II, Southeast Fisheries Science Center, National Marine Fisheries Service, Miami
Dalebout ML, Mead JG, Baker CS, Baker AN, van Heldene AL (2002) A new species of beaked whale Mesoplodon perrini sp. N. (Cetacea: Ziphiidae) through phylogenetic analysis of DNA sequences. Mar Mammal Sci 18:577–608
Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92–96
de Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J (1999) Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci USA 96:2864–2868
Dobzhansky T (1950) Mendelian populations and their evolution. Am Nat 84:401–418
Eitner BJ (1995) Systematics of the genus Alopias (Lamniformes: Alopiidae) with evidence for the existence of an unrecognized species. Copeia 1995:562–571
Etter RJ, Rex MA, Chase MC, Quatro JM (1999) A genetic dimension to deep-sea biodiversity. Deep Sea Res Part I Oceanog Res Pap 6:1095–1099
Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319
Farris JS, Källersjö M, Kluge AG, Bult C (1995) Constructing a significance test for incongruence. Syst Biol 44:570–572
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
Fraser-Brunner A (1950) A synopsis of the hammerhead sharks (Sphyrna), with description of a new species. Rec Austral Mus 22(3):231–219
Friesen VL, Piatt JF, Baker AJ (1996) Evidence from cytochrome b sequences and allozymes for a ‘new’ species of alcid: the longbilled murrelet (Brachyramphus perdix). Condor 98:681–690
Garcia-Rodriguez AI, Bowen BW, Domning D, Mignucci-Giannoni A, Marmontel M, Montoya-Ospina A, Morales Vela B, Rudin M, Bonde RK, McGuire PM (1998) Phylogeography of the West Indian manatee (Trichechus manatus): how many populations and how many taxa? Mol Ecol 7:1137–1149
Gardner MG, Ward RD (2002) Taxonomic affinities within Australian and New Zealand Mustelus sharks (Chondrichthyes: Triakidae) inferred from allozymes, mitochondrial DNA and precaudal vertebrae counts. Copeia 2002:356–363
Gilbert CR (1967) A revision of the hammerhead sharks (family Sphyrnidae). Proc US Nat Mus 119(3539)
Goldman N, (1993) Statistical tests of models of DNA substitution. J Mol Evol 36:182–198
Grady JM, Quattro JM (1999) Using character concordance to define taxonomic and conservation units. Conserv Biol 13:1004–1007
Hasegawa M, Kishino M, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174
Heemstra PC (1997) A review of the smooth-hound sharks (genus Mustelus, family Triakidae) of the western Atlantic Ocean, with description of two new species and a new subspecies. Bull Mar Sci 60:894–928
Hillis DM, Mable BK, Larson A, Davis SK, Zimmer EA (1996) Nucleic acids IV: sequencing and cloning. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Assoc, Inc., Sunderland, pp 321–381
Jordan DS (1908) The law of geminate species. Am Nat XLII(494):73–80
Kocher TD, Carleton KL (1999) Base substitution in fish mitochondrial DNA: patterns and rates. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic, NewYork, pp 13–24
Kotas JE (2002) IUCN red list of threatened species—Sphyrna lewini. In: 2002 IUCN Red List of Threatened Species
Last PR, Stevens JD (1994) Sharks and rays of Australia. CSIRO, Hobart
Lee CE (2000) Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution 54:2014–2027
Maddison WP, Maddison DR (1992) McClade, version 3.0. Sinauer, Sunderland
Martin AP (1992) Application of mitochondrial DNA sequence analysis to the problem of species identification of sharks. NOAA Technical Report NMFS 115. National Technical Information Service, Silver Springs
Martin A (1993) Hammerhead shark origins. Nature 364:494
Mayr E (1940) Speciation phenomena in birds. Amer Nat 74:249–278
Moritz C (1994) Application of mtDNA in conservation: a critical review. Mol Ecol 3:401–411
NMFS (2001) Final United States plan of action for the conservation and management of sharks. NOAA/NMFS/US Department of Commerce, Feb 2001
Palumbi SR (1996) Nucleic acids II: The polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Assoc, Inc., Sunderland, pp 205–247
Pardini AT, Jones CS, Noble LR, Kreiser B, Malcolm H, Bruce BD, Stevens JD, Cliff G, Scholl MC, Francis M, Duffy CAJ, Martin AP (2001) Sex-biased dispersal of great white sharks. Nature 412:139–140
Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818
Quattro JM, Chase MR, Rex MA, Greig TW, Etter RJ (2001a) Extreme mitochondrial DNA divergence within populations of the deep-sea gastropod Frigidoalvania brychia. Mar Biol 139:1107–1113
Quattro JM, Jones WJ, Grady JM, Rohde FC (2001b) Gene-gene concordance and the phylogenetic relationships among rare and widespread pygmy sunfishes (genus Elassoma). Mol Phylogenet Evol 18:217–26
Schizas NV, Street GT, Coull BC, Chandler GT, Quattro JM (1999) Molecular population structure of the marine benthic copepod Microarthridion littorale along the southeastern and Gulf coasts of the United States. Mar Biol 135:399–405
Sites JW, Crandall KA (1997) Testing species boundaries in biodiversity studies. Conserv Biol 11:1289–1297
Slade RW, Moritz C, Heideman A (1994) Multiple nuclear-gene phylogenies: applications to pinnipeds and comparison with a mitochondrial DNA gene phylogeny. Mol Biol Evol 11:341–356
Smith SE, Au DW, Show C (1998) Intrinsic rebound potentials of 26 species of Indo-Pacific sharks. Mar Freshw Res 49:663–678
Springer S (1941) A new species of hammerhead shark of the genus Sphyrna. Proc Florida Acad Sci (1940) 5:45–62
Stevens JD, Bonfil R, Dunlvy NK, Walker PA. (2000) The effects of fishing on sharks, rays, and chimeras (chondrichthyans), and the implications for marine ecosystems. ICES J Mar Sci 57:476–494
Stoner DS, Grady JM, Priede KA, Quattro JM (2003) Amplification primers for the mitochondrial control region and sixth intron of the nuclear-encoded lactate dehydrogenase A gene in elasmobranch fishes. Conserv Genet 4:805–808
Walker TI (1998) Can shark resources be harvested sustainably? A question revisited with a review of shark fisheries. Mar Freshw Res 49:553–572
Weins JL, Penkrot TA (2002) Deliniting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst Biol 51:69–91
Williams ST, Knowlton N, Wiegt LA, Jara JA (2001) Evidence for three major clades within the snapping shrimp genus Alpheus inferred from nuclear and mitochondrial gene sequence data. Mol Phyl Evol 20:375–89
Acknowledgements
This study was made possible through the generous contribution of hammerhead shark samples by C. Woodley, National Ocean Service, Charleston, SC; M. Grace, L. Jones, National Marine Fisheries Service, Pascagoula, MS Laboratory; J. Carlson, Southeast Fisheries Science Center, National Marine Fisheries Service, Panama City, FL; G. Ulrich, D. Oakley, South Carolina Department of Natural Resources, Marine Resources Division, Charleston, SC; E. Heist, Southern Illinois University, Carbondale, IL; F. Rohde, North Carolina Division of Marine Fisheries; R. McAuley, Department of Fisheries, Government of Western Australia; M. Shivji, Nova University, and B. Stequert, Centre ORSTOM de Brest. T. Burgess, K. Oswald, and M. Roberts provided invaluable assistance with laboratory and analytical techniques. Funding for this project was provided by the Cooperative Institute for Fisheries Molecular Biology (FISHTEC; NOAA/NMFS (RT/F-1)), the National Science Foundation (OCE-9814172), and SC SeaGrant (R/MT-5) to JMQ. Additional funding was provided by the Louisiana Board of Regents Support Fund, LEQSF ((2000-2001)-ENH-TR-67) and the Graduate School, College of Sciences, and Department of Biological Sciences, University of New Orleans to JMG.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J.P.Grassle, New Brunswick
Rights and permissions
About this article
Cite this article
Quattro, J.M., Stoner, D.S., Driggers, W.B. et al. Genetic evidence of cryptic speciation within hammerhead sharks (Genus Sphyrna). Marine Biology 148, 1143–1155 (2006). https://doi.org/10.1007/s00227-005-0151-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00227-005-0151-x