Bibliography
F. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints.Memoirs of the Amer. Math. Soc. 4, No. 165 (1976).
J. M. Ball, editor,Systems of nonlinear partial differential equations. NATO ASI series, Series C, No. 111, Proc. of NATO Adv. Study Inst. Oxford 1982, Reidel Publ., Dordrecht-Boston-Lancaster (1983).
M. Giaquinta,Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Math. Studies, Princeton Univ. Press (1983).
D. Gilbarg and N. Trudinger,Elliptic partial differential equations of second order, Heidelberg-New York: Springer- Verlag (1977).
D. Hilbert, Mathematische Probleme,Archiv f. Math. und Phys. 3. Reihe, Bd. 1, 44–63, 213-237 (1901), und: Ges.Abhandl. Bd. 3, Springer-Verlag, 290-329 (1935).
S. Hildebrandt, Nonlinear elliptic systems and harmonic mappings,Proc. 1980 Beijing Symp. on Diff. Geom. and Diff. Equ., Vol. 1, Beijing: Science Press (1982) 481–615.
S. Hildebrandt, Calculus of Variations Today, reflected in the Oberwolfach meetings,Perspectives in mathematics, W. Jäger, J. Moser, R. Remmert, (ed.), Basel-Boston-Stuttgart: Birkhäuser Verlag (1983), 321–336.
S. Hildebrandt and A. Tromba,Mathematics and Optimal Form, Scientif. Amer. Library, New York: W. H. Freeman and Co. (1985).
O. A. Ladyzenskaja and N. N. Uralzeva,Linear and quasilinear elliptic equations, New York and London: Acad. Press (1968).
C. B. Morrey,Multiple integrals in the calculus of variations, Berlin-Heidelberg-New York: Springer-Verlag (1966).
J. C. C. Nitsche,Vorlesungen über Minimalflächen, Berlin- Heidelberg-New York: Springer-Verlag (1975).
L. Simon,Lectures on Geometric Measure Theory, Centre for Math. Anal., Austral. Nat. Univ. Canberra Vol. 3 (1983).
Picture Credits
Figures 1, 6, 10: S. Hildebrandt and A. Tromba,Mathematics and Optimal Form, New York: W. H. Freeman & Co. (1985).
Figure 2: S. Hildebrandt and J. C. C. Nitsche, A uniqueness theorem for surfaces of least area with partially free boundaries on obstacles,Archive for Rational Mechanics and Analysis 79, 189–218 (1982).
Figures 3, 5, 8, 9: Bildarchiv. Inst. für Leichte Flächentragwerke, Universität Stuttgart.
Figure 7: E. Häckel,Reports of the Scientific Results of H.M.S. Challenger, London, 1881–89.
Figure 14: B. Winkel und J. Krön,Minimalwegenetze mit vielen Knoten, Studienarbeit 2/1985, Inst. für Leichte Flächentragwerke, TU Stuttgart.
Author information
Authors and Affiliations
Additional information
This article is an edited translation ofVariationsrechnung heute, which was published by the Rheinisch-Westfälische Akademie der Wissenschaften inNatur-, Ingenieur- und Wirtschaftswissenschaßen 345 (1986). The original paper in German was based upon a lecture intended for non-mathematicians.
The translator wishes to thank the author and his friends George Booth and Hardy Grant for reading the translation and suggesting a number of improvements.
Rights and permissions
About this article
Cite this article
Hildebrandt, S. The calculus of variations today. The Mathematical Intelligencer 11, 50–60 (1989). https://doi.org/10.1007/BF03025887
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03025887