Skip to content

NumPy Project 01 — Array Basics Playground 🔢 Hands-on implementation of array creation, slicing, reshaping & filtering using NumPy. Demonstrates efficient vectorized operations for data manipulation and analysis. Includes clean code, visual documentation, flowchart & final results.

Notifications You must be signed in to change notification settings

Ashwin18-Offcl/Numpy_Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 

Repository files navigation

NumPy Project 01 – Array Basics Playground

🔍 Learn Arrays • Slice • Reshape • Analyze

NumPy Project Banner


📂 Table of Contents


📝 Project Overview

This beginner-friendly NumPy project focuses on:

✔️ NumPy array creation
✔️ Slicing, indexing & reshaping
✔️ Vectorized operations for performance
✔️ Boolean conditions for filtering

📌 A portfolio-ready project for Python, Data Analytics & Machine Learning beginners.


🧠 Skills Demonstrated

Category Skills
Python Data Handling Arrays, slicing, transformation
Data Filtering Boolean selection
Data Analysis Shape, size & output comparison
Performance Optimization Vectorization vs loops
GitHub Documentation Professional formatting

🧱 Technical Implementation

🔁 Workflow Diagram

flowchart TD
    A[Start] --> B[Create NumPy Array]
    B --> C[Check Shape & Size]
    C --> D[Slice Required Elements]
    D --> E[Reshape into Column Matrix]
    E --> F[Apply Vectorized Operations]
    F --> G[Filter Values using Condition]
    G --> H[Print Output & Analyze]
Loading

🧪 Core Code

import numpy as np

array_1 = np.array([10, 20, 30, 40, 50])
print("Original Array:", array_1)

print("Shape:", array_1.shape)
print("Size:", array_1.size)

print("Sliced Array:", array_1[1:4])

reshaped_array = array_1.reshape(5, 1)
print("\nReshaped Array (5x1):\n", reshaped_array)

multiplied_array = array_1 * 2
print("\nArray after Multiplying by 2:", multiplied_array)

filtered_array = array_1[array_1 > 25]
print("\nValues greater than 25:", filtered_array)

🧾 Output Summary

Original Array: [10 20 30 40 50]
Shape: (5,)
Size: 5
Sliced Array: [20 30 40]
Reshaped Array (5x1):
 [[10]
 [20]
 [30]
 [40]
 [50]]
Array after Multiplying by 2: [20 40 60 80 100]
Values greater than 25: [30 40 50]

💡 Key Business Insights Discovered

Insight Practical Value
Vectorization is faster & scalable Reduces execution time & cost
Boolean filtering extracts relevant data Useful in fraud detection & data cleansing
Reshaping supports ML-ready data Better training inputs for models
Minimal code = maintainable pipelines Efficient production analytics

🖼️ Visualizations Created

Asset Purpose
README Banner Visual project identity
PDF/PPT visual documentation Strong portfolio presentation

📁 Folder Location:
Documentation/NumPy_Project01_Portfolio_Pack/


🧩 Advanced Python Techniques Demonstrated

  • Vectorized computation
  • Efficient memory usage
  • Conditional filtering
  • Data restructuring for ML
  • Clean output formatting

💼 Business Value Demonstrated

✔ Faster computation than Excel-like operations
✔ Reliable filtered data for business decisions
✔ Smooth integration with ML pipelines
✔ Supports cost-efficient analytics workflows


🔍 Key Observations:

  • Array indexing & slicing se hum specific range ke values nikal sakte hain
  • Reshaping se 1D array ko matrix form me convert karna easy hai
  • Vectorized operations har element par one-shot me apply ho jate hain
  • Boolean filter se sirf condition-match hone wale elements milte hain

🧩 Findings & Insights

  • Vectorization > Loops for numerical operations – faster & cleaner code
  • 📐 Arrays ko easily reshape kiya ja sakta hai according to model/input needs
  • 🧹 Boolean filtering se data cleaning & subsetting bahut asaan ho jata hai
  • 📊 Yehi concepts aage chal kar Pandas, ML models & data pipelines me use hote hain

🏁 Summary / Conclusion

NumPy arrays:

  • 🔹 Fast, flexible & memory-efficient hote hain
  • 🔹 Real-world data processing ke liye backbone ka kaam karte hain
  • 🔹 Is project ne aapko array creation → manipulation → analysis ka poora flow dikhaya

Yeh project Data Analytics & Machine Learning ke liye ek perfect starting point hai 🚀


🚀 Future Enhancements

  • 📈 Visualize results using Matplotlib / Seaborn
  • 🧮 Add more complex operations (mean, std, variance, etc.)
  • 📂 Work with 2D / 3D arrays (matrices & tensors)
  • 🧠 Link this with a small ML model as next step

📚 Related Documentation

🧭 Quick Access

📄 Full Report PDF:
Documentation/Complete Project Overview.pdf

📦 Portfolio Pack (PDF + PPT + Images):
Documentation/NumPy_Project01_Portfolio_Pack/


🧑‍💻 Author

Ashwin Panbude
📍 India | Data Analyst

🔗 LinkedIn Profile:
www.linkedin.com/in/ashwin-panbude-27b824253


⭐ Support This Project

If this helped you 👇
✨ Please Star ⭐ the repo — it motivates more open-source contributions!

“Small consistent projects build a strong Data Analyst mindset.” 🚀

About

NumPy Project 01 — Array Basics Playground 🔢 Hands-on implementation of array creation, slicing, reshaping & filtering using NumPy. Demonstrates efficient vectorized operations for data manipulation and analysis. Includes clean code, visual documentation, flowchart & final results.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages